精英家教网 > 高中数学 > 题目详情
设三角形ABC的内角A,B,C的对边分别为a,b,c,且acosC=b-
1
2
c.
(Ⅰ)求角A的大小;
(Ⅱ)若a=
3
,求三角形ABC面积S的最大值.
考点:正弦定理,余弦定理
专题:解三角形
分析:(Ⅰ)利用正弦定理化简已知等式,根据sinB=sin(A+C),利用两角和与差的正弦函数公式化简,整理后求出cosA的值,即可确定出角A的大小;
(Ⅱ)利用余弦定理列出关系式,将a,cosA的值代入得到关系式,利用基本不等式求出bc的最大值,即可确定出三角形ABC面积S的最大值.
解答: 解:(Ⅰ)由正弦定理化简acosC=b-
1
2
c得:sinAcosC=sinB-
1
2
sinC,
即sinAcosC=sin(A+C)-
1
2
sinC=sinAcosC+cosAsinC-
1
2
sinC,
∴cosAsinC-
1
2
sinC=0,
又sinC≠0,
∴cosA=
1
2

∵0<A<π,
∴A=
π
3

(Ⅱ)∵a=
3
,cosA=
1
2

∴由余弦定理得cosA=
b2+c2-3
2bc
=
1
2
,即b2+c2=bc+3,
∵b2+c2≥2bc,当且仅当b=c时取等号,
∴bc+3≥2bc,即bc≤3,
∴S△ABC=
1
2
bcsinA≤
1
2
×3×
3
2
=
3
3
4

则当b=c=
3
时,三角形ABC面积S的最大值为
3
3
4
点评:此题考查了正弦、余弦定理,以及三角形的面积公式,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足a1=a,an+1=Sn+(-1)n,n∈N*,且{an+
2
3
(-1)n}
是等比数列.
(1)求a的值;
(2)求出通项公式an
(3)求证:
1
a3
+
1
a4
+
+
1
a2n-1
+
1
a2n
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}的前n项和为Sn,对任意正整数n都有6Sn=1-2an,记bn=log
1
2
an

(Ⅰ)求a1,a2的值;
(Ⅱ)求数列{bn}的通项公式;
(Ⅲ)若cn+1-cn=bn,c1=0,求证:对任意n≥2,n∈N*都有
1
c2
+
1
c3
+…+
1
cn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}的前n项和为Sn,且满足Sn=3n+k.
(1)求k的值及数列{an}的通项公式;
(2)若数列{bn}满足anbn=n,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=|x2-3x+2|的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=2n2-2n,数列{bn}的前n项和Tn=3-bn
(1)求数列{an}和{bn}的通项公式;
(2)设cn=
1
12
an•bn,求数列{cn}的前n项和Rn的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,两块直角三角板拼在一起,已知∠ABC=45°,∠BCD=60°.
(1)若记
AB
=
a
AC
=
b
,试用
a
b
表示向量
AD
CD

(2)若AB=
2
,求
AE
CD

查看答案和解析>>

科目:高中数学 来源: 题型:

正六棱锥的底面周长为24,侧面与底面所成角为60°.求:
(1)棱锥的高;
(2)侧棱长;
(3)侧棱与底面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列1,1+2,1+2+22,…1+2+22+2n-1,…的前n项和为Sn,则S10=
 

查看答案和解析>>

同步练习册答案