精英家教网 > 高中数学 > 题目详情
14.已知△ABC的三个内角∠A,∠B,∠C所对的边分别为a,b,c,且a2=b2+c2+bc,则角A的值是$\frac{2π}{3}$.

分析 利用余弦定理即可得出.

解答 解:∵a2=b2+c2+bc,
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{-bc}{2bc}$=-$\frac{1}{2}$.
∵A∈(0,π).
∴A=$\frac{2π}{3}$.
故答案为:$\frac{2π}{3}$.

点评 本题考查了余弦定理的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.光线经过点P(3,3)射到直线x-y+1=0上,反射后经过Q点(1,1),求反射光线所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知a+b>0,b=4a,(a+b)n的展开式按a的降幂排列,其中第n项与第n+1项相等,求正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.执行如图所示的程序框图,若输入N=48,则输出S的值是(  )
A.210B.300C.325D.351

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设x,y满足约束条件$\left\{{\begin{array}{l}{x-y≤0}\\{x+y-1≥0}\\{x-2y+2≥0}\end{array}}$,则z=x+3y+m的最大值为4,则m的值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知曲线C:$\frac{x^2}{16}+\frac{y^2}{12}$=1,直线l:$\left\{\begin{array}{l}x=2-\frac{{2\sqrt{5}}}{5}t\\ y=2+\frac{{\sqrt{5}}}{5}t\end{array}$(t为参数)
( I)写出曲线a,b的参数方程,直线2a+3b=6的普通方程;
(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值及取得最大值时P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.给出下列四个命题:
①△ABC中,A>B是sinA>sinB成立的充要条件;
②当x>0且x≠1时,有$lnx+\frac{1}{lnx}≥2$;
③已知Sn是等差数列{an}的前n项和,若S7>S5,则S9>S3
④若函数$y=f(x-\frac{3}{2})$为R上的奇函数,则函数y=f(x)的图象一定关于点F($\frac{3}{2}$,0)成中心对称.
其中所有正确命题的序号为①③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.△ABC中,点M在线段AC上,点P在线段BM上,且满足$\frac{AM}{MC}=\frac{MP}{PB}$=2,若$|{\overrightarrow{AB}}|=2,|{\overrightarrow{AC}}|=3,∠BAC={90°}$,则$\overrightarrow{AP}•\overrightarrow{BC}$的值为$-\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=1,$\overrightarrow{a}$与$\overrightarrow{b}$之间的夹角为$\frac{π}{3}$,那么向量$\overrightarrow{m}$=$\overrightarrow{a}$-4$\overrightarrow{b}$的模为$\sqrt{13}$.

查看答案和解析>>

同步练习册答案