精英家教网 > 高中数学 > 题目详情
4.光线经过点P(3,3)射到直线x-y+1=0上,反射后经过Q点(1,1),求反射光线所在的直线方程.

分析 利用轴对称的性质,建立关系式算出点P关于直线x-y+1=0对称点P′(2,4).根据镜面反射原理可得反射光线所在直线为P′Q所在直线,用两点式求出直线P′Q的方程,并化成一般式即可.

解答 解:设点P(3,3)关于直线x-y+1=0对称点Q′(m,n),则由 $\left\{\begin{array}{l}{\frac{n-3}{m-3}•1=-1}\\{\frac{m+3}{2}-\frac{n+3}{2}+1=0}\end{array}\right.$求得 $\left\{\begin{array}{l}{m=2}\\{n=4}\end{array}\right.$,∴P′(2,4).
根据题意利用反射定理可得反射光线所在直线为P′Q所在直线.
∵Q点(1,1),故P′Q的方程为 $\frac{y-1}{4-1}$=$\frac{x-1}{2-1}$,即3x-y-2=0.

点评 本题主要考查求一个点关于某条直线的对称点的方法,反射定理,用两点式求直线方程,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.解下列不等式:
(1)x2-5x+6<0;
(2)x2+x-12≥0;
(3)x2-9≤0;
(4)3x2<7x-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若向量$\overrightarrow{a}$=(sin(α+$\frac{π}{6}$),1),$\overrightarrow{b}$=(1,cosα-$\frac{\sqrt{3}}{4}$),$\overrightarrow{a}$⊥$\overrightarrow{b}$,则sin(α+$\frac{4π}{3}$)=(  )
A.-$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{3}}{4}$C.-$\frac{1}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设P是△ABC内一点,且S△ABC的面积为4,定义f(p)=(x,y,z),其中x,y,z分别是△PBC,△PCA,△PAB的面积,若△ABC内一动点m满足f(M)=(x,y,3),则$\frac{1}{x}$+$\frac{9}{y}$的最小值为(  )
A.1B.9C.16D.20

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a(sinA-sinB)=csinC-bsinB,且2a=c,则sinA=$\frac{\sqrt{3}}{4}$..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$\frac{tanα+1}{1-tanα}$=1998,则sec2α+tan2α的值为(  )
A.1997B.1998C.1999D.2000

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.为了了解某班同学喜爱打篮球是否与性别有关,对该班全体同学进行了问卷调查,统计调查结果得到如下列联表
 喜爱打篮球不喜爱打篮球合计
男生m            5 
女生10            n 
合计  50
已知从该班全体同学中随机抽取1人,抽到喜爱打篮球的学生的概率为$\frac{3}{5}$.
(Ⅰ)求列联表中m,n的值;
(Ⅱ)用分层抽样的方法在喜欢打篮球的同学中抽取6名同学,然后再从这6名同学中任取2名同学,求所选2名同学中至少有1名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,其中向量$\overrightarrow{a}$=(2cosx,1),$\overrightarrow{b}$=(cosx,$\sqrt{3}$sin2x),x∈R.
(1)求f(x)的最大值及此时对应x的集合
(2)若f(x)=1-$\sqrt{3}$,且x∈[-$\frac{π}{3}$,$\frac{π}{3}$],求x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知△ABC的三个内角∠A,∠B,∠C所对的边分别为a,b,c,且a2=b2+c2+bc,则角A的值是$\frac{2π}{3}$.

查看答案和解析>>

同步练习册答案