精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=4sinxcos(x+$\frac{π}{6}$)+1
(1)求函数f(x)的最小正周期,并写出的单调递增区间
(2)在△ABC,角A,B,C的对边分别为a,b,c,若f(A)=2,a=3,S△ABC=$\sqrt{3}$,求b2+c2的值.

分析 (1)利用三角恒等变换化简f(x),求出它的最小正周期T与单调增区间;
(2)利用f(A)=2求出A的值,再利用正弦、余弦定理,即可求出b2+c2的值.

解答 解:(1)f(x)=4sinxcos(x+$\frac{π}{6}$)+1
=4sinxcosxcos$\frac{π}{6}$-4sin2xsin$\frac{π}{6}$+1
=$\sqrt{3}$sin2x+cos2x
=2sin(2x+$\frac{π}{6}$);
∴f(x)的最小正周期是T=$\frac{2π}{2}$=π,
令-$\frac{π}{2}$+2kπ≤2x+$\frac{π}{6}$≤$\frac{π}{2}$+2kπ,k∈Z,
解得-$\frac{π}{3}$+kπ≤x≤$\frac{π}{6}$+kπ,k∈Z,
∴函数f(x)的单调增区间为[-$\frac{π}{3}$+kπ,$\frac{π}{6}$+kπ],k∈Z;
(2)△ABC中,f(A)=2sin(2A+$\frac{π}{6}$)=2,
∴sin(2A+$\frac{π}{6}$)=1,
∴A=$\frac{π}{6}$;
又a=3,∴a2=b2+c2-2bccosA,
即9=b2+c2-2bccos$\frac{π}{6}$,
∴b2+c2=9+$\sqrt{3}$bc;
又S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}$bcsin$\frac{π}{6}$=$\frac{1}{4}$bc=$\sqrt{3}$,
∴bc=4$\sqrt{3}$,
∴b2+c2=9+$\sqrt{3}$×4$\sqrt{3}$=21.

点评 本题考查了三角恒等变换以及正弦、余弦定理的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知点$F(0,\frac{1}{4})$是抛物线x2=2py(p>0)的焦点,设A(2,y0)是抛物线上的一点.
(1)求该抛物线在点A处的切线l的方程;
(2)求曲线C、直线l和x轴所围成的图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=x3-6x2+12x+a(a∈R),则函数f(x)的极值点的个数为(  )
A.0B.1
C.2D.与实数a的取值有关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设M、N是抛物线C:y2=3x上任意两点,点E的坐标为(-λ,0)(λ≥0),若$\overrightarrow{EM}$•$\overrightarrow{EN}$的最小值为0,则λ=(  )
A.0B.$\frac{3}{2}$C.$\frac{3}{4}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=loga(4-x2)在区间[0,2)上单调递增,则实数a取值范围为0<a<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设点A为曲线C:ρ=2cosθ在极轴Ox上方的一点,且0≤∠AOx≤$\frac{π}{4}$,以A为直角顶点,AO为一条直角边作等腰直角三角形OAB(B在A的右下方),求点B的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=-x3+3x+2分别在x1、x2处取得极小值、极大值.xOy平面上点A、B的坐标分别为(x1,f(x1))、(x2,f(x2)),该平面上动点P满足$\overrightarrow{PA}$•$\overrightarrow{PB}$=4.求:
(1)求点A、B的坐标;
(2)求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{1}{2}{x^2}$-5x+4lnx.
(1)求函数f(x)的单调区间;
(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.电动自行车的耗电量y与速度x的关系为y=$\frac{1}{3}{x^3}-\frac{39}{2}{x^2}$-40x(x>0),为使耗电量最小,则速度应为(  )
A.45B.40C.35D.30

查看答案和解析>>

同步练习册答案