精英家教网 > 高中数学 > 题目详情
7.点P极坐标为(2,$\frac{5π}{6}$),则它的直角坐标是(  )
A.(1,-$\sqrt{3}$)B.(-1,$\sqrt{3}$)C.($\sqrt{3}$,-1)D.(-$\sqrt{3}$,1)

分析 根据题意,设P的直角坐标为(x,y),由P的极坐标坐标可得有$\left\{\begin{array}{l}{x=2×cos\frac{5π}{6}}\\{y=2×sin\frac{5π}{6}}\end{array}\right.$,解可得x、y的值,即可得答案.

解答 解:根据题意,设P的直角坐标为(x,y)
点P极坐标为(2,$\frac{5π}{6}$),
则有$\left\{\begin{array}{l}{x=2×cos\frac{5π}{6}}\\{y=2×sin\frac{5π}{6}}\end{array}\right.$,解可得$\left\{\begin{array}{l}{x=-\sqrt{3}}\\{y=1}\end{array}\right.$,
即P的直角坐标为(-$\sqrt{3}$,1);
故选:D.

点评 本题考查极坐标与直角坐标的转化,关键是掌握极坐标的定义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow{b}$=(-1,0),$\overrightarrow{c}$=($\sqrt{3}$,k),若2$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{c}$垂直,则k=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数φ(x)=sinx-kx(k∈R).
(I)若函数φ(x)在x=0处的切线与y轴垂直,求实数k的值;
(Ⅱ)若函数φ(x)在R内单调,求实数k的取值范围;
(Ⅲ)当k=$\frac{1}{2}$时,求函数y=φ(2x)在x∈[-$\frac{π}{2}$,$\frac{π}{2}$]上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知正四棱锥的底面边长为4cm,高为$\sqrt{5}cm$,则该四棱锥的侧面积是24cm2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.图中的程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入a,b,i的值分别为6、8、0,则输出的i=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合A={x|x2-4x+3<0},B={x|2x-3>0},则A∩B=(  )
A.(-3,-$\frac{3}{2}$)B.($\frac{3}{2}$,3)C.(1,$\frac{3}{2}$)D.(-3,$\frac{3}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知AB是半圆O的直径,AB=4,C、D是半圆上的两个三等分点.
(1)求$\overrightarrow{AO}•\overrightarrow{OD}$和|$\overrightarrow{AO}+\overrightarrow{OC}$|;
(2)在半圆内任取一点P,求△ABP的面积大于2$\sqrt{3}$的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.函数f(x)=Asin(ωx+α)(A>0,ω>0,-$\frac{π}{2}$<α<$\frac{π}{2}$)的最小正周期是π,且当x=$\frac{π}{6}$时f(x)取得最大值3.
(1)求f(x)的解析式及单调增区间;
(2)若x0∈(0,2π],且f(x0)=$\frac{3}{2}$,求x0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AC⊥BD于点O,E为线段PB上的点,且BD⊥AE.
(1)求证:PD∥平面AEC;
(2)若BC∥AD,BC=$\sqrt{2}$,AD=2$\sqrt{2}$,PD=3且AB=CD.求PC与平面PAB所成角的正弦值.

查看答案和解析>>

同步练习册答案