精英家教网 > 高中数学 > 题目详情
7.已知直线l经过直线3x+4y-2=0与直线2x+y+2=0的交点P,且垂直直线2x-y-1=0.
(Ⅰ)求直线l的方程;
(Ⅱ)已知直线l与圆x2-2x+y2=0相交于A,B两点,求弦AB的长.

分析 (Ⅰ)联立两直线方程得到方程组,求出方程组的解集即可得到交点P的坐标,根据直线l与2x-y-1=0垂直,设出直线l的方程,把P代入即可得到直线l的方程;
(Ⅱ)求出圆心到直线的距离,利用勾股定理,求弦AB的长.

解答 解:(Ⅰ)由$\left\{\begin{array}{l}{3x+4y-2=0}\\{2x+y+2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-2}\\{y=2}\end{array}\right.$,∴P的坐标是(-2,2).
∵所求直线l与2x-y-1=0垂直,∴可设直线l的方程为x+2y+m=0.
把点P的坐标代入得-2+2×2+m=0,即m=-2.
所求直线l的方程为x+2y-2=0.
(Ⅱ)由题意圆心(1,0),半径r=1.
圆心到直线的距离d=$\frac{1}{\sqrt{5}}$,
∴|AB|=2$\sqrt{1-\frac{1}{5}}$=$\frac{4\sqrt{5}}{5}$.

点评 此题考查学生会利用联立两直线的方程的方法求两直线的交点坐标,掌握直线的一般式方程,考查直线与圆的位置关系,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若sin(180°+α)+cos(180°-α)=-a,则cos(540°+α)+sin(360°-α)的值是(  )
A.aB.-aC.$\frac{2a}{3}$D.$\frac{3a}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在正方体ABCD-A1B1C1D1中,AB=2,点E是BC的中点.
(Ⅰ)求线段DE的长;
(Ⅱ)求直线A1E与平面ADD1A1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若$({{x^2}+m}){({x-\frac{1}{x}})^6}$展开式中含x2的项的系数为$-\frac{25}{2}$,则m的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)是定义在R上且周期为4的函数,在区间[-2,2]上,$f(x)=\left\{\begin{array}{l}mx+2,-2≤x<0\\ \frac{nx-2}{x+1},0≤x≤2\end{array}\right.$,其中m,n∈R,若f(1)=f(3),则$\frac{1}{4}\int_{-1}^3{(mx+n})dx$=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.抛物线y2=2px(p>0)与直线l:y=x+m相交于A、B两点,线段AB的中点横坐标为5,又抛物线C的焦点到直线l的距离为2$\sqrt{2}$,则m=(  )
A.-$\frac{1}{3}$或1B.-$\frac{13}{3}$或3C.-$\frac{1}{3}$或-3D.-$\frac{13}{3}$或1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.为备战“全国高中数学联赛”,我市某高中拟成立两个“数学竞赛班”,经过学校预选,选出40名学生,编成A,B两个班,分别由两位教师担任教练进行培训;经过两个月的培训,参加了市里组织的数学竞赛初赛(只有经过初赛,取得相应名次,才能取得参加省统一组织的“全国高中数学联赛”复赛资格),这40名学生的初赛成绩的茎叶图如图:
市数学会规定:140分以上(含140分)为市级一等奖,135分以上(含135分)为市级二等奖,100分以上(含100分)为市级三等奖.
(1)由茎叶图判断A班和B班的平均分$\overline{{x}_{A}}$,$\overline{{x}_{B}}$的大小(只需写出结论);
(2)按照规则:获得市一等奖、二等奖的同学才能获得省里组织的“全国数学联赛”复赛资格,我们称这些同学为“种子选手”,请填写下面的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为称为‘种子’选手”与班级有关?
 A班B班合计
种子选手   
非种子选手   
合计   
(3)在获市级一等奖的同学中选出3人,求至少含有1名A班同学的概率.
下面临界值表仅供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)=$\left\{\begin{array}{l}{(1-2a)x+5a,x<1}\\{lo{g}_{7}x,x≥1}\end{array}\right.$的值域为R,那么a的取值范围是(  )
A.(-∞,-$\frac{1}{3}$]B.(-1,$\frac{1}{2}$)C.[-$\frac{1}{3}$,$\frac{1}{2}$)D.(0,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设m、n是不同的直线,α、β、γ是不同的平的,有以下四个命题:
①若α∥β,α∥γ,则β∥γ   ②若α⊥β,m∥α,则m⊥β
③若m∥n,n?α,则m∥α    ④若m⊥α,m∥β,则α⊥β
其中正确命题的序号是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

同步练习册答案