精英家教网 > 高中数学 > 题目详情
17.已知0<x<y<a<1,设m=logax+logay,则m的取值范围为m>2.

分析 先根据对数的运算性质化简,再由对数的单调性可得答案.

解答 解:因为0<x<y<a<1,
所以m=logax+logay=loga(xy)>logaa2=2,
∴m>2,
故答案为m>2.

点评 本题主要考查对数的运算性质和对数函数的单调性.属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.公元前3世纪,古希腊欧几里得在《几何原本》里提出:“球的体积(V)与它的直径(d)的立方成正比”,此即V=kd3,与此类似,我们可以得到:
(1)正四面体(所有棱长都相等的四面体)的体积(V)与它的棱长(a)的立方成正比,即V=ma3
(2)正方体的体积(V)与它的棱长(a)的立方成正比,即V=na3
(3)正八面体(所有棱长都相等的八面体)的体积(V)与它的棱长(a)的立方成正比,即V=ta3
那么m:n:t=(  )
A.1:6$\sqrt{2}$:4B.$\sqrt{2}$:12:16C.$\frac{\sqrt{2}}{12}$:1:$\sqrt{2}$D.$\sqrt{2}$:6:4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知直线x+y-5=0与两坐标轴围成的区域为M,不等式组$\left\{\begin{array}{l}y≤5-x\\ x≥0\\ y≥3x\end{array}\right.$所形成的区域为N,现在区域M中随机放置一点,则该点落在区域N的概率是(  )
A.$\frac{3}{4}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=sinωx+$\sqrt{3}$cosωx+1的最小正周期为π,当x∈[m,n]时,f(x)至少有12个零点,则n-m的最小值为(  )
A.12πB.$\frac{7π}{3}$C.D.$\frac{16π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知$\frac{sinα-cosα}{2sinα+3cosα}$=$\frac{1}{5}$,求tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等差数列{bn}和各项都是正数的数列{an},且a1=b1=1,b2+b4=10,满足an2-2anan+1+an-2an+1=0
(1)求{an}和{bn}通项公式;
(2)设cn=$\frac{1}{a_n}+{b_n}$,求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设$f(x)=\left\{\begin{array}{l}2{e^{x-1}},x<2\\{log_3}({x^2}-1),x≥2\end{array}\right.$则f(f(1))=1,不等式f(x)>2的解集为$(1,2)∪(\sqrt{10},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.我们把三个集合中,通过两次连线后能够有关系的两个数字的关系称为”鼠标关系”,如图1,可称a与q,b与q,c与q都为”鼠标关系”集合A={a,b,c,d},通过集合 B={1,2,3} 与集合C={m,n}最多能够产生24条”鼠标关系”,(只要有一条连线不同则”鼠标关系”不同)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.一个几何体的三视图如图所示,则此几何体的体积为(  )
A.16B.36C.48D.72

查看答案和解析>>

同步练习册答案