精英家教网 > 高中数学 > 题目详情
9.设$f(x)=\left\{\begin{array}{l}2{e^{x-1}},x<2\\{log_3}({x^2}-1),x≥2\end{array}\right.$则f(f(1))=1,不等式f(x)>2的解集为$(1,2)∪(\sqrt{10},+∞)$.

分析 根据函数的解析式求出f(1)的值是2,从而求出f(2)的值即可;不等式f(x)>2即2ex-1>2或log3(x2-1)>2,即ex-1>1=e0,或x2-1>9,解出即可.

解答 解:$f(x)=\left\{\begin{array}{l}2{e^{x-1}},x<2\\{log_3}({x^2}-1),x≥2\end{array}\right.$,
f(1)=2•e1-1=2,
故f(f(1))=f(2)=log3(4-1)=1,
若f(x)>2,
则2ex-1>2(x<2)或log3(x2-1)>2(x≥2),
即ex-1>1=e0,或x2-1>9,
解得:1<x<2或x>$\sqrt{10}$,
故答案为:1,$(1,2)∪(\sqrt{10},+∞)$

点评 本题考查了解指数、对数不等式问题,考查分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知关于x的不等式|x-m|≤n的解集为{x|0≤x≤4}.
(1)求实数m、n的值;
(2)设a>0,b>0,且a+b=$\frac{m}{a}$+$\frac{n}{b}$,求a+b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\left\{\begin{array}{l}x,0<x<1\\ \frac{1}{x},x≥1\end{array}$,g(x)=af(x)-|x-1|.
(Ⅰ)当a=0时,若g(x)≤|x-2|+b对任意x∈(0,+∞)恒成立,求实数b的取值范围;
(Ⅱ)当a=1时,求g(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知0<x<y<a<1,设m=logax+logay,则m的取值范围为m>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.定义在[-3,-1]∪[1,3]上的函数y=f(x)是奇函数,其部分图象如图所示.
(1)请在坐标系中补全函数f(x)的图象;
(2)比较f(1)与f(3)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn,${S_n}=\frac{{3{a_n}-3}}{2}$(n∈N+).
(1)求数列{an}的通项公式;
(2)若数列{bn}满足an•bn=log3a4n+1,记Tn=b1+b2+b3+…+bn,求证:${T_n}<\frac{7}{2}$(n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点A是抛物线M:y2=2px(p>0)与圆$C:{x^2}+{(y-2\sqrt{2})^2}={a^2}$在第一象限的公共点,且点A到抛物线M焦点F的距离等于a.若抛物线M上一动点到其准线与到点C的距离之和的最小值为2a,则p为(  )
A.$\sqrt{2}$B.2C.$2\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知一个几何体的三视图如右图所示(单位:cm),则该几何体的体积为(  )
A.12cm3B.16cm3C.18cm3D.20cm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设f(x)=|2x|+|x+a|
(I)当a=-1时,求不等式f(x)≤4的解集;
(II)当f(x)=|x-a|时,求x的取值范围.

查看答案和解析>>

同步练习册答案