精英家教网 > 高中数学 > 题目详情
19.设f(x)=|2x|+|x+a|
(I)当a=-1时,求不等式f(x)≤4的解集;
(II)当f(x)=|x-a|时,求x的取值范围.

分析 (I)当a=-1时,$f(x)=\left\{\begin{array}{l}1-3x({x≤0})\\ x+1({0<x≤1})\\ 3x-1({x>1})\end{array}\right.$,即可求不等式f(x)≤4的解集;
(II)当f(x)=|x-a|时,可得2x(x+a)≤0,分类讨论,求x的取值范围.

解答 解:(Ⅰ)$f(x)=\left\{\begin{array}{l}1-3x({x≤0})\\ x+1({0<x≤1})\\ 3x-1({x>1})\end{array}\right.$,
当x≤0时,由f(x)≤4得-1≤x≤0;
当0<x≤1时,由f(x)≤4得0<x≤1;
当x>1时,由f(x)≤4得$1<x≤\frac{5}{3}$;
综上所述,当a=-1时,不等式f(x)≤4的解集为$[{-1,\frac{5}{3}}]$;             …(5分)
(Ⅱ)∵f(x)=|2x|+|x+a|≥|2x-(x+a)|=|x-a|,∴2x(x+a)≤0,
当a=0时,x=0;
当a>0时,-a≤x≤0;
当a<0时,0≤x≤-a.…(10分)

点评 本题考查不等式的解法,考查绝对值不等式的性质,考查分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.设$f(x)=\left\{\begin{array}{l}2{e^{x-1}},x<2\\{log_3}({x^2}-1),x≥2\end{array}\right.$则f(f(1))=1,不等式f(x)>2的解集为$(1,2)∪(\sqrt{10},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设等差数列{an}的前n项和为Sn,若2a3=3+a1,则S9的值为(  )
A.15B.27C.30D.40

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.一个几何体的三视图如图所示,则此几何体的体积为(  )
A.16B.36C.48D.72

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,边长为2的正方形ABCD中,点E、点F分别是AB、BC上的点,且BE=BF,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于点A1
(Ⅰ)若点E是边AB的中点,求证:A1D⊥EF;
(Ⅱ)当$BE=\frac{1}{2}$时,求三棱锥A1-DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在四棱锥P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB,E,F,H分别是棱PA,PB,AD的中点,且过E,F,H的平面截四棱锥P-ABCD所得截面面积为$\frac{{3\sqrt{2}}}{2}$,则四棱锥P-ABCD的体积为(  )
A.$\frac{8}{3}$B.8C.$8\sqrt{3}$D.$24\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列选项中说法正确的是(  )
A.命题“p∨q为真”是命题“p∧q为真”的必要条件
B.向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}•\overrightarrow{b}>0$,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为锐角
C.若am2≤bm2,则a≤b
D.“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x≥0”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知{an}是公差为d的等差数列,它的前n项和为Sn,S4=2S2+8.
(I)求公差d的值;
(II )若a1=1,设Tn是数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和,求使不等式Tn≥$\frac{1}{18}$(m2-5m)对所有的n∈N*恒成立的最大正整数m的值;
(III)设bn=$\frac{2+{a}_{n}}{{a}_{n}}$,若对任意的n∈N*,都有bn≤b4成立,求a1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等比数列{an}的前n项和是Sn,且S3=7,S6=63.
(1)求数列{an}的通项公式;
(2)令f(n)=$\frac{{a}_{n}}{{a}_{n}+{2}^{1006}}$,求数列{f(n)}的前2013项之和T2013

查看答案和解析>>

同步练习册答案