精英家教网 > 高中数学 > 题目详情
17.下列不等式中,正确的是(  )
A.tan$\frac{4π}{7}$>tan$\frac{3π}{7}$B.tan$\frac{2π}{5}$<tan$\frac{3π}{5}$
C.tan(-$\frac{13π}{7}$)>tan(-$\frac{15π}{8}$)D.tan(-$\frac{13π}{4}$)<tan(-$\frac{12π}{5}$)

分析 根据正切函数的单调性与周期性,对选项中的数值进行分析、判断即可.

解答 解:根据正切函数的单调性与周期性,得;
对于A,tan$\frac{4π}{7}$<0<tan$\frac{3π}{7}$,A错误;
对于B,tan$\frac{2π}{5}$>0>tan$\frac{3π}{5}$,B错误;
对于C,tan(-$\frac{13π}{7}$)=tan(-2π+$\frac{π}{7}$)=tan$\frac{π}{7}$,
tan(-$\frac{15π}{8}$)=tan(-2π+$\frac{π}{8}$)=tan$\frac{π}{8}$,
$\frac{π}{2}$>$\frac{π}{7}$>$\frac{π}{8}$>0,
∴tan$\frac{π}{7}$>tan$\frac{π}{8}$,C正确;
对于D,tan(-$\frac{13π}{4}$)=tan(-$\frac{π}{4}$)=-tan$\frac{π}{4}$,
tan(-$\frac{12π}{5}$)=tan(-$\frac{2π}{5}$)=-tan$\frac{2π}{5}$,
且tan$\frac{π}{4}$<tan$\frac{2π}{5}$,
∴-tan$\frac{π}{4}$>tan$\frac{2π}{5}$,D错误.
故选:C.

点评 本题考查了正切函数的单调性与周期性的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知数列{an}满足:a1=1,|an+1-an|=pn,n∈N*,Sn为数列{an}的前n项和.
(1)若{an}是递增数列,且a1,2a2,3a3成等差数列,求p的值;
(2)若p=$\frac{1}{2}$,且{a2n-1}是递增数列,{a2n}是递减数列,求数列{an}的通项公式;
(3)若p=1,对于给定的正整数n,是否存在一个满足条件的数列{an},使得Sn=n,如果存在,给出一个满足条件的数列,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列函数中,在R上为增函数的是(  )
A.y=-2x+1B.y=-$\frac{2}{x}$C.y=2xD.y=x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设命题p:x<-1或x>1;命题q:x<-2或x>1,则¬p是¬q的(  )
A.必要不充分条件B.充要条件
C.充分不必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.两圆x2+y2-6x+16y-48=0与x2+y2+4x-8y-44=0的公切线条数为(  )
A.4条B.3条C.2条D.1条

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.对某种品牌的灯泡进行寿命跟踪调查,统计如下:
寿命(h)100~200200~300300~400400~500500~600
个数32030804030
(Ⅰ)列出频率分布表;
(Ⅱ)画出频率分布直方图;
(Ⅲ)求灯泡寿命在100h~400h的频率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若复数(x2-1)+(x+1)i为纯虚数,则实数x的值为(  )
A.1B.-1C.1或-1D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某商店销售额和利润额如表:
商店名称ABCDE
销售额x(千万元)35679
利润额y(百万元)23345
(1)画出散点图.观察散点图,说明两个变量有怎样的相关性.
(2)计算利润额y对销售额x的回归直线方程.
(3)当销售额为4(千万元)时,估计利润额的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,在平行六面体ABCD-A1B1C1D1中,已知$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AD}=\overrightarrow b$,$\overrightarrow{A{A_1}}=\overrightarrow c$,则用向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$可表示向量$\overrightarrow{B{D_1}}$等于(  )
A.$\overrightarrow a+\overrightarrow b+\overrightarrow c$B.$\overrightarrow a-\overrightarrow b+\overrightarrow c$C.$\overrightarrow a+\overrightarrow b-\overrightarrow c$D.$-\overrightarrow a+\overrightarrow b+\overrightarrow c$

查看答案和解析>>

同步练习册答案