精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C所对应的边分别为a,b,c.已知bcosC+ccosB=2b,则
a
b
=
 
考点:正弦定理
专题:解三角形
分析:已知等式利用正弦定理化简,再利用两角和与差的正弦函数公式及诱导公式化简,再利用正弦定理变形即可得到结果.
解答: 解:将bcosC+ccosB=2b,利用正弦定理化简得:sinBcosC+sinCcosB=2sinB,
即sin(B+C)=2sinB,
∵sin(B+C)=sinA,
∴sinA=2sinB,
利用正弦定理化简得:a=2b,
a
b
=2.
故答案为:2
点评:此题考查了正弦定理,以及两角和与差的正弦函数公式,熟练掌握正弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P(x,y)到直线5x-12y+13=0和直线3x-4y+5=0的距离相等,求点P满足的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

为研究学生喜爱打篮球是否与性别有关,某兴趣小组对本班48名同学进行了问卷调查,得到了如下列联表:
喜爱打篮球不喜爱打篮球合计
男生6
女生10
合计48
若在全班48名同学中随机抽取一人为喜爱打篮球的同学的概率为
2
3

(Ⅰ)请将列联表补充完整(不用写计算过程);
(Ⅱ)你是否有95%的把握认为喜爱打篮球与性别有关?说明理由;
(Ⅲ)若从女同学中抽取2人进一步调查,设其中喜爱打篮球的女同学人数为X,求X的分布列与期望.
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k)0.0500.0100.001
k3.8416.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=2x2-4x+1的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3)(3,2),(4,1),(1,5),(2,4)…则第57个数对是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=1,且a1•a2•…•an=n2 (n≧2),则an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

方程sin2x+cosx+k=0有解,则k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的函数,它具有奇偶性,且f(2+x)=f(2-x),则f(x)的最小正周期是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

条件p:
1
4
<2x<16,条件q:(x+2)(x+a)<0,若p是q的充分而不必要条件,则a的取值范围是(  )
A、(4,+∞)
B、[-4,2)
C、(-∞,-4]
D、(-∞,-4)

查看答案和解析>>

同步练习册答案