精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=2sin($\frac{1}{3}$x-$\frac{π}{6}$)(x∈R),则f($\frac{5π}{4}$)=$\sqrt{2}$.

分析 直接把自变量的值带入解析式求出函数的值.

解答 解:函数f(x)=2sin($\frac{1}{3}$x-$\frac{π}{6}$)(x∈R),则
f($\frac{5π}{4}$)=2sin($\frac{1}{3}•\frac{5π}{4}-\frac{π}{6})$=$2sin\frac{π}{4}=\sqrt{2}$,
故答案为:$\sqrt{2}$.

点评 本题考查的知识要点:利用三角函数的解析式求函数的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.有一函数y=a(x-1)5+bx+c,当x=2012时,函数值为1,并且b,c为整数,则当x=-2010时,函数值不可能为(  )
A.-5B.2C.1D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x+$\frac{π}{2}$)=sinx-f(x),当0≤x<$\frac{π}{2}$时,f(x)=1,则f($\frac{11π}{6}$)=(  )
A.1B.-$\frac{3}{2}$C.$\frac{\sqrt{3}}{2}$-1D.$\frac{3-\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在锐角三角形ABC,角A.B,C的对边分别为a,b,c,满足向量$\overrightarrow{m}$=(2a-c,b),向量$\overrightarrow{n}$=(cosC,cosB),且$\overrightarrow{m}$∥$\overrightarrow{n}$.求t=$\frac{c}{a}$时t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知角的顶点与坐标原点重合,始边落在x轴的非负半轴上,作出下列各角,指出它们是第几象限角,并指出在0°~360°范围内与其终边相同的角.
(1)420°;
(2)-75°;
(3)855°;
(4)-510°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知在△ABC中,D为边AC上一点,AB=AD=4,AC=6,若△ABC的外心恰在线段BD上,则BC=2$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=asinx+bcosx(a、b为常数).
(1)若当x=$\frac{π}{3}$时,f(x)取得最大值为2,求函数f(x)的解析式及最小正周期;
(2)若a=0,b=2,g(x)=f(x+$\frac{π}{3}$),写出g(x)的解析式,当x∈[-$\frac{π}{3}$,$\frac{5π}{3}$]时按照“五点法”作图步骤,在表格中完成填空,并画出函数g(x)的图象,写出一个区间D,D∈[-$\frac{π}{3}$,$\frac{5π}{3}$]中,使得在区间D上,g(x)≤0,且g(x)单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知对于任意实数x,均有f(π-x)=-f(x)与f(2π-x)=f(x)成立,当x∈[0,$\frac{π}{2}$]时,有f(x)=x2,试求f($\frac{59π}{11}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.下表是某地一年中10天测量得白昼时间统计表(时间近似0.1小时,一年按365天计).
日期  1月1日2月28日  3月21日4月27日 5月6日 6月21日 8月13日 9月20日  10月25日12月21日 
 日期位置序号x 159  80 117126 172 225 268 298 355 
 白昼时间y(小时) 5.6 10.212.4  16.417.3  19.4 16.4 12.48.5 5.4 
(1)以日期在365一天中得位置序号x为横坐标,白昼时间y为纵坐标,在给定的坐标中,试选用一个形如y=Asin(ωx+φ)+t的函数来近似描述一年中,白昼时间y与日期位置序号x之间的函数关系;
(2)用(1)中的函数模型估计该地一年中大约有多少天白昼时间大于15.9小时.

查看答案和解析>>

同步练习册答案