精英家教网 > 高中数学 > 题目详情
16.公差不为0的等差数列{an}的首项为1,且a2,a5,a14构成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ) 证明:对一切正整数n,有$\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+…+\frac{1}{{{a_n}{a_{n+1}}}}<\frac{1}{2}$.

分析 (I)利用等差数列与等比数列的通项公式即可得出;
(II)利用“裂项求和”、“放缩法”即可得出.

解答 解:( I)设公差为d,∵a2,a5,a14构成等比数列,
∴$a_5^2={a_2}•{a_{14}}$,
即(1+4d)2=(1+d)•(1+13d),
化简得d2-2d=0,
∵公差不为0,∴公差d=2.
∴数列{an}的通项公式为an=a1+(n-1)d=1+(n-1)×2=2n-1.
( II)$\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+…+\frac{1}{{{a_n}{a_{n+1}}}}=\frac{1}{1•3}+\frac{1}{3•5}+\frac{1}{5•7}+…+\frac{1}{{({2n-1})({2n+1})}}$=$\frac{1}{2}•[{({1-\frac{1}{3}})+({\frac{1}{3}-\frac{1}{5}})+({\frac{1}{5}-\frac{1}{7}})+({\frac{1}{2n-1}-\frac{1}{2n+1}})}]$=$\frac{1}{2}•[{1-\frac{1}{2n+1}}]<\frac{1}{2}$.

点评 本题考查了等差数列与等比数列的通项公式、“裂项求和”、“放缩法”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.过双曲线 $\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1 (a>0,b>0)的一个焦点F向其一条渐近线作垂线l,垂足为A,l与另一条渐近线交于B点,若$\overrightarrow{FB}=2\overrightarrow{FA}$,则双曲线的离心率为(  )
A.2B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知F是抛物线x2=4y的焦点,直线y=kx-1与该抛物线交于第一象限内的零点A,B,若|AF|=3|FB|,则k的值是(  )
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,左、右焦点分别为F1,F2,点G在椭圆C上,且$\overrightarrow{G{F}_{1}}$•$\overrightarrow{G{F}_{2}}$=0,△GF1F2的面积为2.
(Ⅰ)求椭圆C的方程;
(Ⅱ)直线l:y=k(x-1)(k<0)与椭圆Γ相交于A,B两点.点P(3,0),记直线PA,PB的斜率分别为k1,k2,当$\frac{{k}_{1}{k}_{2}}{k}$最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知矩阵A=$[\begin{array}{l}{1}&{0}\\{1}&{1}\end{array}]$,B=$[\begin{array}{l}{0}&{2}\\{3}&{2}\end{array}]$.
(1)求满足条件AM=B的矩阵M;
(2)矩阵M对应的变换将曲线C:x2+y2=1变换为曲线C′,求曲线C′的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图所示,在四边形ABCD中,|$\overrightarrow{CD}$|=4,|$\overrightarrow{AD}$|=5,$\overrightarrow{AB}$•$\overrightarrow{AD}$=$\overrightarrow{CB}$•$\overrightarrow{CD}$=0,令|$\overrightarrow{BC}$|=x,|$\overrightarrow{BA}$|=y,则曲线y=f(x)可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:2017届河南商丘第一高级中学年高三上理开学摸底数学试卷(解析版) 题型:解答题

选修4-4:坐标系与参数方程

在直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.已知点的极坐标为,曲线的参数方程为为参数).

(1)直线且与曲线相切,求直线的极坐标方程;

(2)点与点关于轴对称,求曲线 上的点到点的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源:2017届河南商丘第一高级中学年高三上理开学摸底数学试卷(解析版) 题型:选择题

已知双曲线的右焦点为,直线与双曲线的渐近线在第一象限的交点为为坐标原点.若的面积为,则双曲线的离心率为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.(x+$\frac{1}{x}$-2)9展开式中x3的系数为(  )
A.${C}_{9}^{3}$B.${C}_{18}^{3}$C.${C}_{9}^{4}$D.${C}_{18}^{6}$

查看答案和解析>>

同步练习册答案