精英家教网 > 高中数学 > 题目详情
化简下列式子:
(1)
(2a6)2
10a7b2
×
4ab6
6a3

(2)
(m4n3)2
(m6n)4
×
(m3n2)2
(2mn)2

(3)(
2m3n2
3mn5
)3×
6m2n4
4m3n10
考点:有理数指数幂的化简求值
专题:计算题
分析:根据有理数指数幂的运算法则进行化简即可得到结论.
解答: 解:(1)
(2a6)2
10a7b2
×
4ab6
6a3
=
4×4
10×6
×a12+1-7-3b6-2
=
4
15
a3b4

(2)
(m4n3)2
(m6n)4
×
(m3n2)2
(2mn)2
=
1
2
m8+6-24-2n6+4-4-2=
1
2
m-12n4

(3)(
2m3n2
3mn5
)3×
6m2n4
4m3n10
=
2×6
3×4
m9+2-1-3n6+4-5-10
=m7n-5
点评:本题主要考查指数幂的运算,要求熟练掌握指数幂的运算法则,考查学生的计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列函数中,周期为π且图象关于直线x=
π
3
对称的是(  )
A、y=2cos(
x
2
+
π
3
B、y=2cos(
x
2
-
π
3
C、y=2cos(2x+
π
3
D、y=2cos(2x-
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别为△ABC三个内角A,B,C的对边,如果sinA,sinB,sinC成等差数列,B=30°,△ABC的面积为
3
2
,求边b的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(1,
3
),
b
=(sinx,cosx),且函数f(x)=
a
b
(x∈R).
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的最大值及取得最大值时自变量x的集合;
(3)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=(2+i)m2-
6m
1-i
-2(1-i),当实数m取什么值时,复数z是(1)虚数;(2)纯虚数;(3)零.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:方程
x2
2m
-
y2
m-1
=1表示焦点在y轴上的椭圆;命题q:双曲线
y2
5
-
x2
m
=1的离心率e∈(1,2).
若命题p、q满足:p∧q为假,p∨q为真,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为(0,+∞),若y=
f(x)
x
在(0,+∞)上为增函数,则称f(x) 为“一阶比增函数”.
(1)若f(x)=ax2+ax是“一阶比增函数”,求实数a的取值范围;
(2)若f(x)是“一阶比增函数”,当x2>x1>0时,试比较f(x1)+f(x2)与f(x1+x2)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算由曲线y=9-x2与直线y=x+7围成的封闭区域的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果实数x,y满足约束条件
x≥1
x-y+1≥0
2x-y-2≤0
,则x-2y的最大值是
 

查看答案和解析>>

同步练习册答案