精英家教网 > 高中数学 > 题目详情
17.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数N除以正整数m后的余数为n,则记为N=n(modm),例如11=2(mod3).现将该问题以程序框图的算法给出,执行该程序框图,则输出的n等于(  )
A.21B.22C.23D.24

分析 该程序框图的作用是求被3和5除后的余数为2的数,根据所给的选项,得出结论.

解答 解:该程序框图的作用是求被3除后的余数为2,被5除后的余数为3的数,
在所给的选项中,满足被3除后的余数为2,被5除后的余数为3的数只有23,
故选:C.

点评 本题主要考查程序框图的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的焦距为$2\sqrt{5}$,且双曲线的一条渐近线方程为x-2y=0,则双曲线的方程为(  )
A.$\frac{x^2}{4}-{y^2}=1$B.$\frac{3{x}^{2}}{20}$-$\frac{3{y}^{2}}{5}$=1C.$\frac{{3{x^2}}}{20}-\frac{{3{y^2}}}{5}=1$D.$\frac{{3{x^2}}}{5}-\frac{{3{y^2}}}{20}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在四棱锥P-ABCD中,AD∥BC,AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面ABCD.
(1)求证:直线ED⊥平面PAC;
(2)若直线PE与平面PAC所成的角的正弦值为$\frac{\sqrt{5}}{5}$,求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知△ABC的边长为a,b,c,定义它的等腰判别式为D=max{a-b,b-c,c-a}+min{a-b,b-c,c-a},则“D=0”是△ABC为等腰三角形的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的图象关于y轴对称,该函数的部分图象如图所示,△PMN是以MN为斜边的等腰直角三角形,且$|MN|•|MP|=2\sqrt{2}$,则f(1)的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.有50件产品,编号从1至50,现从中抽5件检验,用系统抽样的方法确定所抽的编号可能是(  )
A.6,11,16,21,26B.3,13,23,33,43C.5,15,25,36,47D.10,20,29,39,49

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某同学从区间[-1,1]随机抽取2n个数x1,x2,…,xn,y1,y2,…,yn,构成n个数对(x1,y1),(x2,y2),…(xn,yn),该同学用随机模拟的方法估计n个数对中两数的平方和小于1(即落在以原点为圆心,1为半径的圆内)的个数,则满足上述条件的数对约有$\frac{nπ}{4}$个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知△ABC的三个顶点坐标分别为A(1,4)、B(5,-2)、C(1,2),求:
(1)边BC中点D的坐标;
(2)BC边上中线AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在单调递增的等差数列{an}中,a3,a7,a15成等比数列,前5项之和等于20.
(1)求数列{an}的通项公式;
(2)设${b_n}=\frac{2}{{{a_n}{a_{n+1}}}}$,记数列{bn}的前n项和为Tn,求使${T_n}≤\frac{24}{25}$成立的n的最大值.

查看答案和解析>>

同步练习册答案