精英家教网 > 高中数学 > 题目详情

设抛物线y2=8x上一点Py轴的距离是4,则点P到该抛物线焦点的距离是(  )

(A)4 (B)6 (C)8 (D)12

 

B

【解析】∵点Py轴的距离是4,延长使得和准线相交于点Q,|PQ|等于点P到焦点的距离,|PQ|=6,所以点P到该抛物线焦点的距离为6.

【方法技巧】求解抛物线上的点到焦点的距离和到准线的距离问题的技巧

抛物线上的点到焦点的距离与抛物线上的点到准线的距离经常相互转化:(1)若求点到焦点的距离,则可联想点到准线的距离;(2)若求点到准线的距离,则经常联想点到焦点的距离.解题时一定要注意.

 

练习册系列答案
相关习题

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业六十一第九章第二节练习卷(解析版) 题型:填空题

某中学开学后从高一年级的学生中随机抽取80名学生进行家庭情况调查,经过一段时间后,再次从这个年级随机抽取100名学生进行学情调查,发现有20名学生上次被抽到过,估计这个学校高一年级的学生人数为    .

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十第八章第一节练习卷(解析版) 题型:选择题

已知△ABC三顶点坐标A(1,2),B(3,6),C(5,2),MAB中点,NAC中点,则直线MN的方程为(  )

(A)2x+y-8=0 (B)2x-y+8=0

(C)2x+y-12=0 (D)2x-y-12=0

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十六第八章第七节练习卷(解析版) 题型:解答题

如图,椭圆C:+=1的焦点在x轴上,左右顶点分别为A1,A,上顶点为B,抛物线C1,C2分别以A,B为焦点,其顶点均为坐标原点O,C1C2相交于直线y=x上一点P.

(1)求椭圆C及抛物线C1,C2的方程.

(2)若动直线l与直线OP垂直,且与椭圆C交于不同两点M,N,已知点Q(-,0),·的最小值.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十六第八章第七节练习卷(解析版) 题型:选择题

若双曲线-=1(a>b>0)的左、右焦点分别为F1,F2,线段F1F2被抛物线x=y2的焦点分成32的两段,则此双曲线的离心率为(  )

(A) (B)

(C) (D)

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十八第八章第九节练习卷(解析版) 题型:填空题

设直线l:2x+y-2=0与椭圆x2+=1的交点为A,B,P是椭圆上的动点,则使得△PAB的面积为的点P的个数为   .

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十八第八章第九节练习卷(解析版) 题型:选择题

已知抛物线y=-x2+3上存在关于直线x+y=0对称的相异两点A,B,|AB|等于(  )

(A)3 (B)4 (C)3 (D)4

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十二第八章第三节练习卷(解析版) 题型:解答题

如图,

在平面直角坐标系中,方程为x2+y2+Dx+Ey+F=0的圆M的内接四边形ABCD的对角线ACBD互相垂直,ACBD分别在x轴和y轴上.

(1)求证:F<0.

(2)若四边形ABCD的面积为8,对角线AC的长为2,·=0,D2+E2-4F的值.

(3)设四边形ABCD的一条边CD的中点为G,OHAB且垂足为H.试用平面解析几何的研究方法判断点O,G,H是否共线,并说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十三第八章第四节练习卷(解析版) 题型:选择题

若直线2x-y+a=0与圆(x-1)2+y2=1有公共点,则实数a的取值范围是(  )

(A)-2-<a<-2+

(B)-2-a-2+

(C)-a

(D)-<a<

 

查看答案和解析>>

同步练习册答案