精英家教网 > 高中数学 > 题目详情
设{an}是公差为-2的等差数列,如果a1+a4+a7+…+a97=50,则a3+a6+a9…+a99=
 
考点:等差数列的性质
专题:等差数列与等比数列
分析:根据利用等差数列通项公式及a3+a6+a9++a99=a1+a4+a7++a97+33×2d求得答案.
解答: 解:∵{an}是公差为-2的等差数列,
∴a3+a6+a9++a99=(a1+2d)+(a4+2d)+(a7+2d)+…+(a97+2d)=a1+a4+a7++a97+33×2d=50-132=-82.
故答案为:-82.
点评:本题主要考查了等差数列的性质.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在锐角△ABC中,向量
m
=(2sinB,
3
),
n
=(2cos2
B
2
-1,cos2B),且
m
n

(Ⅰ)求B;
(Ⅱ)求f(x)=sin2xcosB-cos2xsinB的单调减区间;
(Ⅲ)若sinC=
2
3
,求cosA.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知非零向量
a
b
满足|
a
+
b
|=|
a
-
b
|,求证:
a
b

查看答案和解析>>

科目:高中数学 来源: 题型:

两圆x2+y2-10x-10y=0,x2+y2+6x-2y-40=0公共弦长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

5310被8除余数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

从4名男生和2名女生中任选3人参加演讲比赛,则所选3人中女生人数不超过1人的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

梯形ABCD内接于抛物线y2=2x,其中A(2,2),B(
1
2
,-1),且AB∥CD,设直线AC,BD的斜率为k1,k2,则
1
k1
+
1
k2
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合P={(x,y)|y=x2+2x},Q={(x,y)|y=k,k∈R},若集合P∩Q有且仅有两个子集,则实数k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f1(x)=-ax2,f2(x)=x3+x2,f(x)=f1(x)+f2(x),设f(x)的导函数为f′(x),若不等式f1(x)<f′(x)<f2(x)在区间(1,+∞)上恒成立,则a的取值范围为
 

查看答案和解析>>

同步练习册答案