精英家教网 > 高中数学 > 题目详情
求两焦点的坐标分别为(-2,0),(2,0),且经过点P(2,)的椭圆方程.
椭圆方程是
由题意可知,c=2,设椭圆方程为,则  ①
又点P(2,)在椭圆上,所以   ②,
联立①②解得,(舍去), 故所求椭圆方程是
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在椭圆中,F1,F2分别为椭圆的左、右焦点,B、D分别
为椭圆的左、右顶点,A为椭圆在第一象限内的一点,直线AF1交椭圆于另
一点C,交y轴于点E,且点F1、F2三等分线段BD.
(1)求的值;
(2)若四边形EBCF2为平行四边形,求点C的坐标;
(3)当时,求直线AC的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的焦距是2,则m的值为                              (    )
A.6B.9C.6或4D.9或1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

直角三角形的直角顶点为动点,为两个定点,作,动点满足,当点运动时,设点的轨迹为曲线,曲线轴正半轴的交点为
(Ⅰ) 求曲线的方程;
(Ⅱ) 是否存在方向向量为m的直线,与曲线交于两点,且 与的夹角为?若存在,求出所有满足条件的直线方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知圆,定点A(3,0),M为圆C上一动点,点P在AM上,点N在CM上,且满足,点N的轨迹为曲线E。
(1)求曲线E的方程;
(2)求过点Q(2,1)的弦的中点的轨迹方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线与椭圆相交于A、B两点,且线段AB的中点,在直线上.(1)求此椭圆的离心率;(2)若椭圆的右焦点关于直线的对称点的在圆上,求此椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,中心在原点O的椭圆的右焦点为F(3,0),
右准线l的方程为:x = 12。
(1)求椭圆的方程;(4分)
(2)在椭圆上任取三个不同点,使
证明: 为定值,并求此定值。(8分)


 
 

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知直线的右焦点F,且交椭圆CAB两点,点AFB在直线上的射影依次为点DKE.
(1)若抛物线的焦点为椭圆C的上顶点,求椭圆C的方程;
(2)对于(1)中的椭圆C,若直线Ly轴于点M,且,当m变化时,求的值;
(3)连接AEBD,试探索当m变化时,直线AEBD是否相交于一定点N?若交于定点N,请求出N点的坐标,并给予证明;否则说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

化简方程+=10为不含根式的形式是(    )
A.+="1"B.+=1
C.+="1"D.+=1

查看答案和解析>>

同步练习册答案