精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)的导数为f'(x),且满足$\frac{(2-x)}{f'(x)}$≤0,下列关系中成立的是(  )
A.f(1)+f(3)<2f(2)B.f(1)+f(3)≤2f(2)C.f(1)+f(3)>2f(2)D.f(1)+f(3)≥2f(2)

分析 判断函数的单调性,求解函数的最小值,然后推出结果.

解答 解:函数f(x)的导数为f'(x),且满足$\frac{(2-x)}{f'(x)}$≤0,
可得x<2,f′(x)<0,函数f(x)是减函数.
x>2,f′(x)>0,函数f(x)是增函数.
所以x=2时,函数取得最小值,
可得f(1)+f(3)>2f(2).
故选:C.

点评 本题考查函数的导数的应用,函数的单调性以及函数的最值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.在△ABC中,sinA+2sinBcosC=0,$\sqrt{3}$b=c,则tanA的值是(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{2\sqrt{3}}{3}$C.$\sqrt{3}$D.$\frac{4\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.各项均为正数的等比数列{an}中,4a1,2a3,a5成等差数列,且a1+a3+a5=14,则a1+a3+a5+…+a2n+1=2n+2-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知数列{an}满足:a1为正整数,an+1=$\left\{{\begin{array}{l}{\frac{a_n}{2},\;{a_n}为偶数}\\{3{a_n}+1,{a_n}为奇数}\end{array}}$,如果a1=5,则a1+a2+a3的值为(  )
A.29B.30C.31D.32

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,0<x≤9}\\{f(x-4),x>9}\end{array}\right.$,则f(13)的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=sinx-cosx-ax,其中a∈R.
(1)若f(x)在x=0处取得极值,求实数a的值.
(2)若f(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C的中心在原点,焦点在x轴上,离心率$e<\frac{{\sqrt{2}}}{2}$.以两个焦点和短轴的两个端点为顶点的四边形的周长为8,面积为$2\sqrt{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若点P(x0,y0)为椭圆C上一点,直线l的方程为3x0x+4y0y-12=0,求证:直线l与椭圆C有且只有一个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ex-e-x
(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)当x∈(0,1)时,不等式ex-e-x>k(x+$\frac{{x}^{3}}{6}$)恒成立,求实数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.a、b、c是三角形ABC的三边,设向量$\overrightarrow P=(a+c,b),\overrightarrow q=(b-a,c-a)$,若$\overrightarrow P∥\overrightarrow q$,则角C大小为$\frac{π}{3}$.

查看答案和解析>>

同步练习册答案