分析 分离常数得到$y=-\frac{a}{2}+\frac{\frac{a}{2}+3}{1-2x}$,这样便可得出$y≠-\frac{a}{2}$,根据条件知y≠-2,从而有$-\frac{a}{2}=-2$,这样即可求出a.
解答 解:$y=\frac{-\frac{a}{2}(1-2x)+\frac{a}{2}+3}{1-2x}=-\frac{a}{2}+\frac{\frac{a}{2}+3}{1-2x}$;
$\frac{\frac{a}{2}+3}{1-2x}≠0$;
∴$y≠-\frac{a}{2}$;
∴$-\frac{a}{2}=-2$;
∴a=4.
故答案为:4.
点评 考查函数值域的概念,分离常数法的运用,以及反比例函数的值域.
科目:高中数学 来源: 题型:选择题
| A. | y=sin2x+cos2x | B. | y=sin(4x+$\frac{π}{2}$) | C. | y=sin2xcos2x | D. | y=sin22x-cos22x |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com