精英家教网 > 高中数学 > 题目详情
4.已知$\overrightarrow{a}$与$\overrightarrow{b}$为单位向量,且|$\overrightarrow{a}+\overrightarrow{b}$|=$\sqrt{3}$|$\overrightarrow{a}-\overrightarrow{b}$|.求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角.

分析 运用向量的平方即为模的平方,结合向量的数量积的定义和夹角范围,计算即可得到夹角.

解答 解:由$\overrightarrow{a}$与$\overrightarrow{b}$为单位向量,且|$\overrightarrow{a}+\overrightarrow{b}$|=$\sqrt{3}$|$\overrightarrow{a}-\overrightarrow{b}$|,
则($\overrightarrow{a}+\overrightarrow{b}$)2=3($\overrightarrow{a}-\overrightarrow{b}$)2
即有${\overrightarrow{a}}^{2}$+2$\overrightarrow{a}•\overrightarrow{b}$+${\overrightarrow{b}}^{2}$=3(${\overrightarrow{a}}^{2}$-2$\overrightarrow{a}•\overrightarrow{b}$+${\overrightarrow{b}}^{2}$),
2${\overrightarrow{a}}^{2}$-8$\overrightarrow{a}•\overrightarrow{b}$+2${\overrightarrow{b}}^{2}$=0,
即有2-8×1×1×cos<$\overrightarrow{a}$,$\overrightarrow{b}$>+2-=0,
即cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{1}{2}$,
由0≤<$\overrightarrow{a}$,$\overrightarrow{b}$>≤π,
则有$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{3}$.

点评 本题考查向量的数量积的定义和性质,主要考查向量的平方即为模的平方,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.不画图,写出下列函数的振幅、周期和初相,并说明这些函数的图象可以由正弦曲线经过怎样的变换得到.
(1)y=5sin($\frac{4}{3}$x+$\frac{π}{8}$);
(2)y=$\frac{3}{4}$sin($\frac{1}{5}$x-$\frac{π}{7}$);
(3)y=8sin(4x+$\frac{π}{3}$);
(4)y=$\frac{1}{2}$sin(3x-$\frac{π}{10}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.直线y=2x与曲线y=x2围成的图形的面积为(  )
A.$\frac{4}{3}$B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设sin(3π+α)+cos(α-4π)=-$\frac{1}{8}$,求$\frac{cos(α-3π)}{sin(3π-α)}$-$\frac{sin(-α)}{cos(α+3π)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期为π,且当x∈[0,$\frac{π}{2}$]时,f(x)=sinx,则f(2014π+$\frac{5π}{3}$)的值为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左焦点与抛物线x2=4$\sqrt{2}$ay的焦点的连线平行于该双曲线的一条渐近线,则双曲线的离心率为(  )
A.2B.$\sqrt{2}$C.$\frac{{\sqrt{2+2\sqrt{33}}}}{2}$D.$\frac{{1+\sqrt{33}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.四双拖鞋,随意拿出四支,不能组成一双的次数为16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.Rt△ABC中,∠C=90°,∠A=30°,AB=2,BC=1,D,E,F分别是三边上的点,使△DEF为等边三角形,求其最小的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知$\overrightarrow{a}$+$\overrightarrow{b}$=$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,$\overrightarrow{a}$-$\overrightarrow{b}$=$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,用$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$表示$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+$\frac{1}{2}$$\overrightarrow{{e}_{2}}$.

查看答案和解析>>

同步练习册答案