精英家教网 > 高中数学 > 题目详情
9.已知四面体ABCD,$\overrightarrow{DA}$=$\overrightarrow{a}$,$\overrightarrow{DB}$=$\overrightarrow{b}$,$\overrightarrow{DC}$=$\overrightarrow{c}$,点M在棱DA上,$\overrightarrow{DM}$=2$\overrightarrow{MA}$,N为BC中点,则$\overrightarrow{MN}$=(  )
A.-$\frac{2}{3}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$-$\frac{1}{2}$$\overrightarrow{c}$B.-$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$+$\frac{1}{2}$$\overrightarrow{c}$C.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$+$\frac{1}{2}$$\overrightarrow{c}$D.$\frac{2}{3}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$-$\frac{1}{2}$$\overrightarrow{c}$

分析 根据题意,利用空间向量的线性表示与运算,用$\overrightarrow{DA}$、$\overrightarrow{DB}$与$\overrightarrow{DC}$表示出$\overrightarrow{MN}$.

解答 解:连接DN,如图所示,

四面体ABCD中,$\overrightarrow{DA}$=$\overrightarrow{a}$,$\overrightarrow{DB}$=$\overrightarrow{b}$,$\overrightarrow{DC}$=$\overrightarrow{c}$,
点M在棱DA上,$\overrightarrow{DM}$=2$\overrightarrow{MA}$,∴$\overrightarrow{DM}$=$\frac{2}{3}$$\overrightarrow{DA}$,
又N为BC中点,∴$\overrightarrow{DN}$=$\frac{1}{2}$($\overrightarrow{DB}$+$\overrightarrow{DC}$);
∴$\overrightarrow{MN}$=$\overrightarrow{MD}$+$\overrightarrow{DN}$=-$\frac{2}{3}$$\overrightarrow{DA}$+$\frac{1}{2}$$\overrightarrow{DB}$+$\frac{1}{2}$$\overrightarrow{DC}$=-$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$+$\frac{1}{2}$$\overrightarrow{c}$.
故选:B.

点评 本题考查了空间向量的线性表示与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知顶点在原点,对称轴为y轴的抛物线C过点(2,-2).
(1)求抛物线C的方程;
(2)若抛物线C与过点P(0,-1)的直线l相交于A,B两点,O为坐标原点,若直线OA和OB的斜率之和为2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的平均数为18,乙组数据的中位数为16,则x,y的值分别为(  )
A.18,6B.8,16C.8,6D.18,16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,四边形ABCD为正方形,E为AB的中点,F为AD上靠近D的三等分点,若向正方形内随机投掷一个点,则该点落在△CEF内的概率为(  )
A.$\frac{9}{16}$B.$\frac{7}{16}$C.$\frac{7}{12}$D.$\frac{5}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知p:方程方程 $\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{2-m}$=1表示焦点在y轴上的椭圆;q:实数m满足m2-(2a+1)m+a2+a<0且¬q是¬p的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=ax-1-2(a>0,a≠1)的图象恒过定点A,若点A在直线mx-ny-1=0上,其中m>0,n>0,则$\frac{1}{m}+\frac{2}{n}$的最小值为(  )
A.4B.5C.6D.$3+2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设全集U={x∈N|x≤8},集合A={1,3,7},B={2,3,8},则(∁UA)∩(∁UB)=(  )
A.{1,2,7,8}B.{4,5,6}C.{0,4,5,6}D.{0,3,4,5,6}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)=2x,若$p=f({\sqrt{ab}})$,$q=f({\frac{a+b}{2}})$,$r=\frac{1}{2}({f(a)+f(b)})$,其中,a>b>0,则下列关系中正确的是(  )
A.p<r<qB.q<p<rC.r<p<qD.p<q<r

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在直角坐标系xOy中,圆C1:x2+(y-2)2=$\frac{1}{4}$,椭圆C2:x2+4y2=4,以坐标原点为极点,x轴正半轴为极轴建立极坐标系
(I)求C1、C2的极坐标方程;
(Ⅱ)若P,Q分别是圆C1,椭圆C2,椭圆C2上的任意点,求|PQ|的最大值及相应的点Q坐标.

查看答案和解析>>

同步练习册答案