精英家教网 > 高中数学 > 题目详情
16.已知数列{an}的前n项和为Sn,且满足a1=-2,an+1+3Sn+2=0(n∈N*).
(1)求a2、a3的值;
(2)求数列{an}的通项公式;
(3)是否存在整数对(m、n),使得等式an2-m•an=4m+8成立?若存在,请求出所有满足条件的(m,n);若不存在,请说明理由.

分析 (1)根据递推公式即可求出a2、a3的值;
(2)an+1+3Sn+2=0,①,an+2+3Sn+1+2=0,②,得到an+2=-2an+1,继而得到数列{an}是以-2为首项,以-2为公比的等比数列,问题得以解决;
(3)由题意求出m=(-2)n-4+$\frac{8}{(-2)^{n}+4}$,分别代入n的值求出(m,n)的坐标.

解答 解:(1)a1=-2,an+1+3Sn+2=0(n∈N*),
∴a2+3S1+2=0,a3+3S2+2=0,
∴a2+3a1+2=0,a3+3(a1+a2)+2=0,
∴a2=4,a3=-8,
(2)an+1+3Sn+2=0,①,
an+2+3Sn+1+2=0,②,
②-①得,an+2-an+1+3(Sn+1+Sn)=0,
∴an+2=-2an+1
∴$\frac{{a}_{n+2}}{{a}_{n+1}}$=-2,
∴数列{an}是以-2为首项,以-2为公比的等比数列,
∴an=-2×(-2)n-1=(-2)n
(3)∵an2-m•an=4m+8,
∴m=$\frac{{{a}_{n}}^{2}-8}{4+{a}_{n}}$=$\frac{(-2)^{2n}-8}{(-2)^{n}+4}$=$\frac{(-2)^{2n}-16+8}{(-2)^{n}+4}$=(-2)n-4+$\frac{8}{(-2)^{n}+4}$,
∵m为整数,则$\frac{8}{(-2)^{n}+4}$为整数,
当n=1时,m=-2,
当n=2时,m=1,
当n=3时,m=-14,
则满足条件的(m,n)共有(-2,1),(1,2),(-14,3).

点评 本题考查了数列的递推公式,等比数列的通项公式,考查了学生的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机抽取一个点Q,则点Q取自△ABE内部的概率等于(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求函数y=$\sqrt{2}$sinx,x∈($\frac{π}{4}$,$\frac{5π}{4}$)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.圆x2+y2=9与圆(x-1)2+(y+1)2=16的位置关系是(  )
A.相交B.内切C.外切D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.与直线x+2y-4=0在x轴上的截距相同,与直线xtan$\frac{2π}{3}$+y-4=0的倾斜角相同的直线方程为(  )
A.$\sqrt{3}$x-y-4=0B.$\sqrt{3}$x-y-4$\sqrt{3}$=0C.$\sqrt{3}$x+y-4=0D.$\sqrt{3}$x+y-4$\sqrt{3}$=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知O为四边形ABCD所在平面内的一点,且向量$\overrightarrow{OA},\overrightarrow{OB},\overrightarrow{OC},\overrightarrow{OD}$满足等式$\overrightarrow{OA}$+$\overrightarrow{OC}$=$\overrightarrow{OB}$+$\overrightarrow{OD}$.
(1)作图并观察四边形ABCD的形状;
(2)四边形ABCD有什么特性?试证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}满足an+1=2bn,bn+1=an+2,a1=2,b1=4.
(1)求a2及b3的值;
(2)求证:$\frac{{a}_{n+2}+4}{{a}_{n}+4}$=$\frac{{b}_{n+2}+2}{{b}_{n}+2}$;
(3)求数列{an-bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知对边相等的四面体ABCD,AB=3,AC=4,AD=5,求四面体ABCD外接球的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知抛物线C的顶点是椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的中心,其焦点与该椭圆的右焦点重合.
(1)求抛物线C的方程;
(2)过抛物线C的焦点F的直线与抛物线交于M、N两点,自M、N点向准线l作垂线,垂足分别为M1、N1,记△FBM1,△FM1N1,△FNN1的面积分别为S1、S2、S3是否存在实数λ,使得对任意过焦点的直线,都有S22=λS1S3成立,若存在,求λ的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案