精英家教网 > 高中数学 > 题目详情
已知等差数列{an}的前n项和为Sn,若a4=18-a5,则S8等于(  )
A、72B、54C、36D、18
考点:等差数列的前n项和
专题:等差数列与等比数列
分析:由等差数列的性质得S8=
8
2
(a4+a5)
=4×18=72.
解答: 解:∵等差数列{an}的前n项和为Sn,a4=18-a5
∴a4+a5=18,
∴S8=
8
2
(a4+a5)
=4×18=72.
故选:A.
点评:本题考查数列的前8项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

使函数f(x)=sin(2x+θ)+
3
cos(2x+θ)的图象关于原点对称,且满足?x1,x2∈[0,
π
4
],恒有(x1-x2)[f(x1)-f(x2)]<0的θ的一个值是(  )
A、
π
3
B、
3
C、
3
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A=60°,b=1,其面积为
3
,则c等于(  )
A、5
B、
14
C、4
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:关于x的方程x2+ax+a=0有实数解;命题q:-1<a≤2.
(1)若¬p是真命题,求实数a的取值范围;
(2)若(¬p)∧q是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x2,g(x)=alnx(a>0).
(1)当a=16时,试求函数F(x)=f(x)-g(x)在[1,3]上的值域;
(2)若直线l交f(x)的图象C于A,B两点,与l平行的另一直线l′与图象C切于点M.求证:A,M,B三点的横坐标成等差数列;
(3)若函数F(x)的图象上没有任何一点在x轴的下方,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(2cosx,1),
n
=(cosx,2
3
sinxcosx-1)
,函数f(x)=
m
n

(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c,若f(B)=1,b=
7
,sinA=3sinC,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列四个命题,其中真命题的个数为(  )
①“若b=3则b2=9”的逆命题;      
②“全等三角形的面积相等”的否命题;
③“?x0∈R,x02+3x0-4≤0”的否定; 
④“若A∪B=A,则A⊆B”的逆否命题.
A、3B、2C、1D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

在用分析法证明命题p时,发现要证明p成立,只需证明命题q成立即可,这就说明p是q的(  )
A、充分条件
B、必要条件
C、充要条件
D、即不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

设x≥0,则 x+
2
x+1
的最小值是(  )
A、2
B、3
C、2
2
D、2
2
-1

查看答案和解析>>

同步练习册答案