分析 由复数z2求出$\overline{{z}_{2}}$,然后直接利用复数代数形式的乘除运算化简得答案.
解答 解:∵z2=1-i,
∴$\overline{{z}_{2}}=1+i$,又z1=3-i,
则z1•$\overline{{z}_{2}}$=(3-i)(1+i)=4+2i;
∵$\frac{{z}_{1}}{{z}_{2}}$=$\frac{3-i}{1-i}=\frac{(3-i)(1+i)}{(1-i)(1+i)}=\frac{4+2i}{2}=2+i$,
∴$\frac{{z}_{1}}{{z}_{2}}$在复平面内所对应的点位于第一象限.
故答案为:4+2i;一.
点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{π}{2}$,$\frac{π}{4}$) | B. | (-$\frac{π}{2}$,$\frac{π}{4}$] | C. | [$\frac{π}{4}$,$\frac{π}{2}$) | D. | ($\frac{π}{4}$,$\frac{π}{2}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com