精英家教网 > 高中数学 > 题目详情
18.若关于x的方程x2-x+a-4=0的一根大于零、另一根小于零,求实数a的取值范围.

分析 设f(x)=x2-x+a-4,则由题意可得f(0)=a-4<0,由此求得实数a的取值范围.

解答 解:设f(x)=x2-x+a-4,则由题意可得f(0)=a-4<0,
求得a<4.

点评 本题主要考查一元二次方程根的分布与系数的关系,二次函数的性质,体现了转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\sqrt{4x-{x}^{2}}$,g(x)=kx+2,若方程f(x)=g(x)有两个相异的实根,则实数k的取值范围是[$-\frac{1}{2}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.方程2x-ax2+1=0在(0,1)内有两个不相等的实数根,则a的取值范围是∅.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)已知全集U=R,集合A={x|1≤x-1<3},B={x|2x-9≥6-3x}.
求:(1)①A∪B; ②∁U(A∩B)
(2)化简:(-2x${\;}^{\frac{1}{4}}$y${\;}^{-\frac{1}{3}}$)(3x${\;}^{-\frac{1}{2}}$y${\;}^{\frac{2}{3}}$)(-4x${\;}^{\frac{1}{4}}$y${\;}^{\frac{2}{3}}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在平面直角坐标系xOy中,设点P为圆o:x2+y2+2x=0上的任意一点,点Q(2a,a+3)(a∈R),则线段PQ长度的最小值为$\sqrt{5}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知在三棱柱ABC-A1B1C1中,侧棱A1A⊥底面ABC,∠ACB=90°,E是棱CC1上的动点,F是AB的中点,AC=1,BC=2,AA1=4.当E为CC1中点时,
(1)标出所有点坐标;
(2)求异面直线AE与CF所成角的余弦值;
(3)求面CFB1,AB1E的法向量.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=log2(x2+1),函数g(x)=($\frac{1}{3}$)x-m.若?x1∈[0,3],?x2∈[1,2],使得f(x1)≥g(x2),则m的取值范围是(  )
A.[$\frac{1}{9}$,+∞)B.[$\frac{1}{3}$,+∞)C.(-∞,$\frac{1}{9}$]D.(-∞,$\frac{1}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.将椭圆$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{9}$=1变换为以椭圆的短轴为一条直径的圆的伸缩变换是$\left\{\begin{array}{l}{x'=\frac{3}{4}x}\\{y'=y}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点为F(1,0),点(-1,$\frac{\sqrt{2}}{2}$)在椭圆C上,点T满足$\overrightarrow{OT}$=$\frac{{a}^{2}}{\sqrt{{a}^{2}-{b}^{2}}}$•$\overrightarrow{OF}$(其中O为坐标原点),过点F作一斜率为1的直线交椭圆于P、Q两点(其中P点在x轴上方,Q点在x轴下方)
(1)求椭圆C的方程;
(2)求△PQT的面积.

查看答案和解析>>

同步练习册答案