精英家教网 > 高中数学 > 题目详情
20.在射击训练中,某战士射击了两次,设命题p是“第一次射击击中目标”,命题q是“第二次射击击中目标”,则命题“两次射击中至少有一次没有击中目标“为真命题的充要条件是(  )
A.(¬p)∨(¬q)为真命题B.p∨(¬q)为真命题C.(¬p)∧(¬q)为真命题D.p∨q为真命题

分析 由已知,结合容斥定理,可得答案.

解答 解:∵命题p是“第一次射击击中目标”,
命题q是“第二次射击击中目标”,
∴命题“两次射击至少有一次没有击中目标”(¬p)∨(¬q),
故选:A.

点评 本题考查的知识点是事件的表示,容斥定理,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.△ABC的内角A,B,C的对边分别为a,b,c,已知2c-a=2bcosA.
(1)求角B的大小;
(2)若a=2,b=$\sqrt{7}$,求c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设集合M={x|(x-1)(x+2)<0},N={x∈Z||x|≤2},则M∩N=(  )
A.{-1,0}B.{0,1}C.{-1,0,1}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知直线l的方程为ax+2y-3=0,且a∈[-5,4],则直线l的斜率不小于1的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四棱锥P-ABCD中,底面ABCD是正方形,且PA=PB=PC=PD,MB=2AM,CN=2PN
(1)求证:MN∥面PAD
(2)求证:BD⊥PC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知不等式组$\left\{\begin{array}{l}{2x-y≥0}\\{x-y≤0}\\{y+x-k≤0}\end{array}\right.$表示的平面区域的面积为$\frac{4}{3}$,则实数k=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某经销商从外地水产养殖厂购进一批小龙虾,并随机抽取40只进行统计,按重量分类统计结果如图:
(1)记事件A为:“从这批小龙虾中任取一只,重量不超过35g的小龙虾”,求P(A)的估计值;
(2)若购进这批小龙虾100千克,试估计这批小龙虾的数量;
(3)为适应市场需求,了解这批小龙虾的口感,该经销商将这40只小龙虾分成三个等级,如下表:
等级一等品二等品三等品
重量(g)[5,25)[25,45)[45,55]
按分层抽样抽取10只,再随机抽取3只品尝,记X为抽到二等品的数量,求抽到二级品的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xoy中,曲线C的参数方程为$\left\{\begin{array}{l}x=4{t^2}\\ y=4t\end{array}\right.$(t为参数),以O为极点x轴的正半轴为极轴建极坐标系,直线l的极坐标方程为ρ(cosθ-sinθ)=4,且与曲线C相交于A,B两点.
(Ⅰ)在直角坐标系下求曲线C与直线l的普通方程;
(Ⅱ)求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|1≤x≤4},B={x|x>2},那么A∪B=(  )
A.(2,4)B.(2,4]C.[1,+∞)D.(2,+∞)

查看答案和解析>>

同步练习册答案