分析 根据等差数列的性质化简S17=S9,再利用等差数列的通项公式化简,用含a1的式子表示出d,把a1的值代入即可求出d的值,然后由a1和d的值写出等差数列的通项公式,进而表示出等差数列的前n项和为关于n的二次函数,配方后即可求出Sn的最大值.
解答 解:由S17=S9,
得到$\frac{17({a}_{1}+{a}_{17})}{2}$=$\frac{9({a}_{1}+{a}_{9})}{2}$,即17(2a1+16d)=9(2a1+8d),又a1=25,
解得:d=-$\frac{2{a}_{1}}{25}$=-2,
所以an=a1+(n-1)d=-2n+27,
则Sn=$\frac{n({a}_{1}+{a}_{n})}{2}$=$\frac{n(-2n+52)}{2}$=-n2+26n=-(n-13)2+169,
所以当n=13时,Sn有最大值.
故答案是:13.
点评 此题考查学生灵活运用等差数列的通项公式及前n项和公式化简求值,掌握等差数列的性质,是一道基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2x+y-12=0 | B. | 2x+y+3=0 | C. | x-y+3=0 | D. | x-y-1=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{1}{7}$,$\frac{1}{5}$]∪{3} | B. | [3,5)∪{$\frac{1}{7}$} | C. | [$\frac{1}{7}$,$\frac{1}{3}$]∪{5} | D. | [3,7)∪{$\frac{1}{5}$} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com