分析 (Ⅰ)求出f(x)的导数,由x=1是f(x)的极值点,可得f′(1)=0,可得m=0,检验即可;
(Ⅱ)取m=-1,求出f(x)的导数,构造函数h(x)=ex(1-x)-1,再求导数,判断在x>0上的单调性,再运用条件,结合单调性即可得证.
解答 (Ⅰ)解:由f(x)=$\frac{x}{{e}^{x}+m}$,则f′(x)=$\frac{{e}^{x}(1-x)+m}{({e}^{x}+m)^{2}}$,
由x=1是f(x)的极值点,得f′(1)=$\frac{m}{(e+m)^{2}}$=0,
解得m=0,
此时f(x)=$\frac{x}{{e}^{x}}$,经检验,x=1是f(x)的极值点.
则所求的实数m的值为0.
(Ⅱ)证明:取m=-1时,f(x)=$\frac{x}{{e}^{x}-1}$,此时f′(x)=$\frac{{e}^{x}(1-x)-1}{({e}^{x}-1)^{2}}$.
构造函数h(x)=ex(1-x)-1,
则h'(x)=ex(1-x)+ex(-1)=-xex在(0,+∞)上恒负,
即有h(x)在(0,+∞)上单调递减,
即有h(x)<h(0)=0,
故f'(x)<0在(0,+∞)恒成立,
说明f(x)=$\frac{x}{{e}^{x}-1}$在(0,+∞)上单调递减.
即有当0<a<b<1时,$\frac{b}{{e}^{b}-1}<\frac{a}{{e}^{a}-1}$,
又因为eb>ea>1,所以eb-1>0,ea-1>0,
则有b(ea-1)<a(eb-1),
所以bea+a<aeb+b成立.
点评 本题主要考查函数、导数、不等式等基础知识,考查推理论证能力、抽象概括能力、运算求解能力,考查函数与方程思想、化归与转化思想.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 60° | C. | 90° | D. | 120° |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1<a<2 | B. | -3<a<6 | C. | a<-3或a>6 | D. | a<-1或a>2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| PM2.5日均值(微克/立方米)范围 | 空气质量级别 |
| (1,35] | 1级 |
| (35,75] | 2级 |
| 大于75 | 超标 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com