精英家教网 > 高中数学 > 题目详情
14.为了得到函数$y=sin(2x+\frac{π}{3})$的图象,只要将$y=cos(\frac{π}{2}-x),(x∈R)$的图象上所有的点(  )
A.向左平移$\frac{π}{6}$个单位长度,再把所得图象各点的横坐标伸长到原来的2倍,纵坐标不变
B.向左平移$\frac{π}{6}$个单位长度,再把所得图象各点的横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变
C.向左平移$\frac{π}{3}$个单位长度,再把所得图象各点的横坐标伸长到原来的2倍,纵坐标不变
D.向左平移$\frac{π}{3}$个单位长度,再把所得 图象各点的横 坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变

分析 由条件利用诱导公式,函数y=Asin(ωx+φ)的图象变换规律,可得结论.

解答 解:将y=cos($\frac{π}{2}$-x)=sinx 的图象上所有的点 向左平移$\frac{π}{3}$个单位长度,可得y=sin(x+$\frac{π}{3}$)的图象;
再把所得 图象各点的横 坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变,可得y=sin(2x+$\frac{π}{3}$)的图象,
故选:D.

点评 本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.求下列向量的模以及在这些向量方向上的单位向量.
(1)$\overrightarrow{a}$=(-1,2);
(2)$\overrightarrow{a}$=(3,4);
(3)$\overrightarrow{a}$=(cosθ,sinθ);
(4)由点A(2,-5),B(-1,-2)所构成的向量$\overrightarrow{AB}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设集合A为函数y=$\sqrt{{x^2}+2x-8}$的定义域,集合B为关于x的不等式$a{x^2}+({4a-\frac{1}{a}})x-\frac{4}{a}$≤0的解集.
(1)求A;
(2)若B⊆A,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在平面内点O是直线AB外一点,点C在直线AB上,若$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,则λ+μ=1;类似地,如果点O是空间内任一点,点A,B,C,D中任意三点均不共线,并且这四点在同一平面内,若$\overrightarrow{OD}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$,则x+y+z等于(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.“1<x<2”是“x<2”成立的充分不必要(填“充分不必要”、“必要不充分”、“充要”或“既不充分又不必要”)条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线$l:\left\{\begin{array}{l}x=1+tcos({α-\frac{π}{2}})\\ y=-2+tsin({α-\frac{π}{2}})\end{array}\right.$(其中t为参数,$0<α<\frac{π}{2}$)的倾斜角为(  )
A.αB.$\frac{π}{2}-α$C.$\frac{π}{2}+α$D.$α-\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=(ax2+x-1)ex,其中e是自然对数的底数,a∈R.
(Ⅰ)若a=0,求曲线f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若$a≤-\frac{1}{2}$,求f(x)的单调区间;
(Ⅲ)若a=-1,函数f(x)的图象与函数$g(x)=\frac{2}{3}{x^3}+{x^2}+m$的图象仅有1个公共点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数$f(x)=\frac{2x}{x+1}$,函数g(x)=ax-2a+2(a>0),若存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,则实数a的取值范围是$[\frac{1}{2},2]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数$f(x)=\left\{\begin{array}{l}{x^2}+4x,x≥0\\ 4x-{x^2},x<0\end{array}\right.$,若f(2-a2)>f(a),则实数a的取值范围是(  )
A.(-2,1)B.(-1,2)C.(-∞,-1)∪(2,+∞)D.(-∞,-2)∪(1,+∞)

查看答案和解析>>

同步练习册答案