14£®ÒÑÖªÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{3}cos¦Õ}\\{y=sin¦Õ}\end{array}\right.$£¨¦ÕΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñcos£¨¦È+$\frac{¦Ð}{3}$£©=2£®
£¨¢ñ£©ÇóÇúÏßC1µÄÆÕͨ·½³ÌÓëÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÉèPΪÇúÏßC1Éϵ͝µã£¬ÇóµãPµ½C2ÉϵĵãµÄ¾àÀëµÄ×îСֵÊÇ´ËʱµãPµÄ×ø±ê£®

·ÖÎö £¨¢ñ£©°ÑÍÖÔ²µÄ²ÎÊý·½³Ì±äÐΣ¬È»ºóƽ·½×÷ºÍÇóµÃÆÕͨ·½³Ì£¬Õ¹¿ªÁ½½ÇºÍµÄÓàÏÒ£¬´úÈëx=¦Ñcos¦È£¬y=¦Ñsin¦ÈÇóµÃÖ±ÏßµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÉèP£¨$\sqrt{3}$cos¦Õ£¬sin¦Õ£©£¬Óɵ㵽ֱÏߵľàÀ빫ʽµÃµ½¾àÀ룬ÀûÓÃÈý½Çº¯ÊýµÄ×îÖµÇóµÃ´ð°¸£®

½â´ð ½â£º£¨¢ñ£©ÓÉ$\left\{\begin{array}{l}{x=\sqrt{3}cos¦Õ}\\{y=sin¦Õ}\end{array}\right.$£¬µÃ$\left\{\begin{array}{l}{\frac{x}{\sqrt{3}}=cos¦Õ}\\{y=sin¦Õ}\end{array}\right.$£¬Á½Ê½Æ½·½×÷ºÍµÃ$\frac{{x}^{2}}{3}+{y}^{2}=1$£¬
¡àÇúÏßC1µÄÆÕͨ·½³ÌΪ$\frac{{x}^{2}}{3}+{y}^{2}=1$£»
ÓɦÑcos£¨¦È+$\frac{¦Ð}{3}$£©=2£¬µÃ$¦Ñcos¦Ècos\frac{¦Ð}{3}-¦Ñsin¦Èsin\frac{¦Ð}{3}=2$£¬
¼´$\frac{1}{2}¦Ñcos¦È-\frac{\sqrt{3}}{2}¦Ñsin¦È=2$£¬¼´$x-\sqrt{3}y-4=0$£®
¡àÇúÏßC2µÄÖ±½Ç×ø±ê·½³ÌΪ$x-\sqrt{3}y-4=0$£»
£¨¢ò£©ÉèP£¨$\sqrt{3}$cos¦Õ£¬sin¦Õ£©£¬ÓÉÌâÒâÖª£¬µãPµ½Ö±ÏßC2¾àÀëΪ
$d=\frac{|\sqrt{3}cos¦Õ-\sqrt{3}sin¦Õ-4|}{2}$=$\frac{|\sqrt{6}cos£¨\frac{¦Ð}{4}+¦Õ£©-4|}{2}¡Ý\frac{4-\sqrt{6}}{2}$£¬
µ±¦Õ=-$\frac{¦Ð}{4}$ʱ£¬dÈ¡×îСֵ$\frac{4-\sqrt{6}}{2}$£¬
´ËʱµãP£¨$\frac{\sqrt{6}}{2}$£¬$-\frac{\sqrt{2}}{2}$£©£®

µãÆÀ ±¾Ì⿼²é²ÎÊý·½³Ì»¯ÆÕͨ·½³Ì£¬¿¼²é¼«×ø±ê·½³Ì»¯Ö±½Ç×ø±ê·½³Ì£¬ÑµÁ·Á˵㵽ֱÏߵľàÀ빫ʽµÄÓ¦Ó㬿¼²éÁËÈý½Çº¯Êý×îÖµµÄÇ󷨣¬ÊÇ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÉèSnÊǵȱÈÊýÁÐ{an}µÄǰnÏîºÍ£¬¹«±Èq=2£¬S5=93£¬Ôòa4=24£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªº¯Êýf£¨x£©=a£¨x-1£©-2lnx£¨a¡Ý0£©£®
£¨¢ñ£©µ±a=1ʱ£¬Çóf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨¢ò£©Èôº¯Êýf£¨x£©ÔÚÇø¼ä£¨0£¬1£©ÉÏÎÞÁãµã£¬ÇóʵÊýaµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖª¡÷ABCµÄÈý¸ö¶¥µãA£¨2£¬0£©£¬B£¨0£¬1£©£¬C£¨3£¬2£©
£¨1£©ÇóBC±ßËùÔÚÖ±Ïߵķ½³Ì£»
£¨2£©ÇóBC±ßÉϵĸßËùÔÚÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÊýÁÐ{an}µÄǰnÏîºÍ¼ÇΪSn£¬a1=2£¬an+1=Sn+n£®
£¨¢ñ£©Çó{an}µÄͨÏʽ£»
£¨¢ò£©ÕýÏîµÈ²îÊýÁÐ{bn}µÄǰnÏîºÍΪTn£¬ÇÒT3=9£¬²¢Âú×ãa1+b1£¬a2+b2£¬a3+$\frac{1}{2}{b_3}$³ÉµÈ±ÈÊýÁУ®
£¨¢¡£©Çó{bn}µÄͨÏʽ£»
£¨¢¢£©ÊÔÈ·¶¨$\sum_{i=1}^n{\frac{1}{b_i^2}}$Óë$\frac{3}{4}$µÄ´óС¹ØÏµ£¬²¢¸ø³öÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬Ð±ÈýÀâÖùABC-A1B1C1ÖУ¬A1B1=A1C1£¬µãE£¬F·Ö±ðÊÇB1C1£¬A1B1µÄÖе㣬AA1=AB=BE=1£¬¡ÏA1AB=60¡ã£®
£¨¢ñ£©ÇóÖ¤£ºAC1¡ÎÆ½ÃæA1BE£»
£¨¢ò£©ÇóÖ¤£ºBF¡ÍÆ½ÃæA1B1C1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®´ÓÅ×ÎïÏßy2=4xͼÏóÉÏÒ»µãPÒýÅ×ÎïÏß×¼ÏߵĴ¹Ïߣ¬´¹×ãΪM£¬ÇÒ|PM|=3£¬ÉèÅ×ÎïÏß½¹µãΪF£¬Ôò¡÷MPFÖܳ¤Îª£¨¡¡¡¡£©
A£®6+3$\sqrt{2}$B£®5+2$\sqrt{3}$C£®8D£®6+2$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬AB=AC£¬DÔÚÏß¶ÎACÉÏ£¬ÇÒAC=$\sqrt{2}$AD£¬BD=1£®
£¨¢ñ£©ÈôA=$\frac{¦Ð}{2}$£¬Çósin¡ÏDBCµÄÖµ£»
£¨¢ò£©Çó¡÷ABCÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®µãFÊÇÅ×ÎïÏßT£ºx2=2py£¨y£¾0£©µÄ½¹µã£¬F1ÊÇË«ÇúÏßC£º$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÓÒ½¹µã£¬ÈôÏß¶ÎFF1µÄÖеãPǡΪÅ×ÎïÏßTÓëË«ÇúÏßCµÄ½¥½üÏßÔÚµÚÒ»ÏóÏÞÄڵĽ»µã£¬ÔòË«ÇúÏßCµÄÀëÐÄÂÊe=$\frac{3\sqrt{2}}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸