相关习题
 0  230983  230991  230997  231001  231007  231009  231013  231019  231021  231027  231033  231037  231039  231043  231049  231051  231057  231061  231063  231067  231069  231073  231075  231077  231078  231079  231081  231082  231083  231085  231087  231091  231093  231097  231099  231103  231109  231111  231117  231121  231123  231127  231133  231139  231141  231147  231151  231153  231159  231163  231169  231177  266669 

科目: 来源: 题型:解答题

8.已知函数f(x)=ex-$\frac{m}{2}$x2-mx-1.
(Ⅰ)当m=1时,求证:x≥0时,f(x)≥0;
(Ⅱ) 当m≤1时,试讨论函数y=f(x)的零点个数.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知函数$f(x)=ln({1+mx})+\frac{x^2}{2}-mx$,其中m>0.
(Ⅰ)当m=1时,求证:-1<x≤0时,$f(x)≤\frac{x^3}{3}$;
(Ⅱ)试讨论函数y=f(x)的零点个数.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知几何体ABCDEF中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE是矩形,FB=$\sqrt{2}$,M,N分别为EF,AB的中点.
(Ⅰ)求证:MN∥平面FCB;
(Ⅱ)若FC=1,求点A到平面MCB的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

5.国内某知名大学有男生14000人,女生10000人.该校体育学院想了解本校学生的运动状况,根据性别采取分层抽样的方法从全校学生中抽取120人,统计他们平均每天运动的时间,如表:(平均每天运动的时间单位:小时,该校学生平均每天运动的时间范围是[0,3])
男生平均每天运动的时间分布情况:
平均每天运动的时间[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)[2.5,3]
人数212231810x
女生平均每天运动的时间分布情况:
平均每天运动的时间[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)[2.5,3]
人数51218103y
(Ⅰ)请根据样本估算该校男生平均每天运动的时间(结果精确到0.1);
(Ⅱ)若规定平均每天运动的时间不少于2小时的学生为“运动达人”,低于2小时的学生为“非运动达人”.
①请根据样本估算该校“运动达人”的数量;
②请根据上述表格中的统计数据填写下面2×2列联表,并通过计算判断能否在犯错误的概率不超过0.05的前提下认为“是否为‘运动达人’与性别有关?”
运动达人非运动达人总  计
男  生
女  生
总  计
参考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目: 来源: 题型:解答题

4.在直角坐标系xOy中,已知曲线C1的参数方程是$\left\{\begin{array}{l}{x=\sqrt{t}}\\{y=\frac{\sqrt{3t}}{3}}\end{array}\right.$(t为参数),在以坐标原点O为极点,x轴的正半轴的极坐标系中,曲线C2的极坐标方程是ρ=2,求曲线C1与C2的交点在直角坐标系中的直角坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

3.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C:ρsin2θ=2cosθ,过定点P(-2,-4)的直线l的参数方程为$\left\{\begin{array}{l}x=-2+\frac{{\sqrt{2}}}{2}t\\ y=-4+\frac{{\sqrt{2}}}{2}t\end{array}\right.(t为参数)$,若直线l和曲线C相交于M、N两点.
(Ⅰ)求曲线C的直角坐标方程和直线l的普通方程;
(Ⅱ)证明:|PM|、|MN|、|PN|成等比数列.

查看答案和解析>>

科目: 来源: 题型:填空题

2.设函数f(x)=$\left\{\begin{array}{l}{{x}^{3},x≥a}\\{a{x}^{2},x<a}\end{array}\right.$,若存在实数b,使函数y=f(x)-b有且只有2个零点,则实数b的取值范围是(0,+∞).

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图所示,△ABC是⊙O的内接三角形,且AB=AC,AP∥BC,弦CE的延长线交AP于点D,求证:AD2=DE•DC.

查看答案和解析>>

科目: 来源: 题型:解答题

19.如图,四棱锥M-ABCD中,底面ABCD为矩形,MD⊥平面ABCD,且MD=DA=1,E为MA中点.
(1)求证:DE⊥MB;
(2)若DC=2,求三棱锥M-EBC的体积.

查看答案和解析>>

科目: 来源: 题型:填空题

18.设有如下三个命题:
甲;m∩l=A,m,l?α,m,l?β;
乙:直线m,1中至少有一条与平面β相交;
丙:平面α与平面β相交;
当甲成立时,乙是丙的充要条件.

查看答案和解析>>

同步练习册答案