相关习题
 0  231084  231092  231098  231102  231108  231110  231114  231120  231122  231128  231134  231138  231140  231144  231150  231152  231158  231162  231164  231168  231170  231174  231176  231178  231179  231180  231182  231183  231184  231186  231188  231192  231194  231198  231200  231204  231210  231212  231218  231222  231224  231228  231234  231240  231242  231248  231252  231254  231260  231264  231270  231278  266669 

科目: 来源: 题型:选择题

3.已知f(x)为偶函数,且满足f(x)=f(-x+2),方程f(x)=0在[0,1]内有且只有一个根$\frac{1}{2016}$,则方程f(x)=0在区间[-2016,2016]内的根的个数为(  )
A.4032B.4036C.2016D.2018

查看答案和解析>>

科目: 来源: 题型:解答题

2.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ-4cosθ=0,直线l过点M(0,4)且斜率为-1.
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程,写出直线l的标准参数方程;
(Ⅱ)若直线l与曲线C交于A、B两点,求|AB|的值.

查看答案和解析>>

科目: 来源: 题型:解答题

1.设函数f(x)=x3-12x+4,x∈R.
(1)求f(x)的单调区间和极值;
(2)若关于x的方程f(x)=a有3个不同实根,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知函数f(x)=x3-12x.
(1)求f′(1)的值;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目: 来源: 题型:填空题

19.函数f(x)=x-4lnx的单调减区间为(0,4).

查看答案和解析>>

科目: 来源: 题型:选择题

18.函数f(x)的定义域为R,f(-2)=2,对任意x∈R,f′(x)>2,则f(x)>2x+6的解集为(  )
A.(-2,2)B.(-∞,-2)C.(-2,+∞)D.(-∞,+∞)

查看答案和解析>>

科目: 来源: 题型:选择题

17.函数f(x)=x3-12x在区间[-4,4]上的最小值是(  )
A.-9B.-16C.-12D.-11

查看答案和解析>>

科目: 来源: 题型:选择题

16.设函数f(x)在(-∞,+∞)内可导,且恒有f′(x)>0,则下列结论正确的是(  )
A.f(x)在R上单调递增B.f(x)在R上是常数C.f(x)在R上不单调D.f(x)在R上单调递减

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知函数f(x)=ax4•lnx+bx4-c在x=1处取得极值-3-c.
(1)试求实数a,b的值;
(2)试求函数f(x)的单调区间;
(3)若对任意x>0,不等式f(x)≥-2c2恒成立,求实数c的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

14.在平面直角坐标系xOy中,以O为极点,x轴非负半轴为极轴建立极坐标系,取相同的长度单位,已知曲线C的极坐标方程为ρ=2$\sqrt{5}$sinθ,直线l的参数方程为$\left\{\begin{array}{l}{x=3-\frac{\sqrt{2}}{2}t}\\{y=\sqrt{5}+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数).
(Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程.
(Ⅱ)若P(3,$\sqrt{5}$),直线l与曲线C相交于M,N两点,求|PM|+|PN|的值.

查看答案和解析>>

同步练习册答案