相关习题
 0  240173  240181  240187  240191  240197  240199  240203  240209  240211  240217  240223  240227  240229  240233  240239  240241  240247  240251  240253  240257  240259  240263  240265  240267  240268  240269  240271  240272  240273  240275  240277  240281  240283  240287  240289  240293  240299  240301  240307  240311  240313  240317  240323  240329  240331  240337  240341  240343  240349  240353  240359  240367  266669 

科目: 来源: 题型:填空题

1.函数f(x)=lnx-2ax(a∈R)有两个不同的零点,则a的取值范围是$({0,\frac{1}{2e}})$.

查看答案和解析>>

科目: 来源: 题型:选择题

20.设a>0,b>2,且a+b=3,则$\frac{2}{a}+\frac{1}{b-2}$的最小值是(  )
A.6B.$2\sqrt{2}$C.$4\sqrt{2}$D.$3+2\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

19.已知$f(x)=\sqrt{3}sinxcosx-{sin^2}x$,把f(x)的图象向右平移$\frac{π}{6}$个单位,再向上平移$\frac{1}{2}$个单位,得到y=g(x)的图象,则(  )
A.g(x)为奇函数B.g(x)为偶函数
C.g(x)在$[0,\frac{π}{3}]$上单调递增D.g(x)的一个对称中心为$(-\frac{π}{2},0)$

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知m>0,设函数f(x)=emx-lnx-2.
(1)若m=1,证明:存在唯一实数$t∈(\frac{1}{2},1)$,使得f′(t)=0;
(2)若当x>0时,f(x)>0,证明:$m>{e^{-\frac{1}{2}}}$.

查看答案和解析>>

科目: 来源: 题型:解答题

17.《汉字听写大会》不断创收视新高,为了避免“书写危机”弘扬传统文化,某市对全市10万名市民进行了汉字听写测试,调查数据显示市民的成绩服从正态分布N(168,16).现从某社区居民中随机抽取50名市民进行听写测试,发现被测试市民正确书写汉字的个数全部在160到184之间,将测试结果按如下方式分成六组:第一组[160,164),第二组[164,168),…,第六组[180,184),如图是按上述分组方法得到的频率分布直方图.
(1)试评估该社区被测试的50名市民的成绩在全市市民中成绩的平均状况及这50名市民成绩在172个以上(含172个)的人数;
(2)在这50名市民中成绩在172个以上(含172个)的人中任意抽取2人,该2人中成绩排名(从高到低)在全市前130名的人数记为ξ,求ξ的数学期望.
参考数据:若η~N(μ,σ2),则P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.9544,P(μ-3σ<X<μ+3σ)=0.9974.

查看答案和解析>>

科目: 来源: 题型:填空题

16.三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为3的正三角形,SC是球O的直径,且SC=4,则此三棱锥的体积V=$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

15.(x2-x-2)3展开式中x项的系数为-12.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知f(x)=-$\frac{{3{x^2}}}{2}$+lnx,g(x)=$\frac{1}{2}{x^2}$-2ax+1+lnx.
(Ⅰ)求函数f(x)的极值.
(Ⅱ)若x0是函数g(x)的极大值点,证明:x0lnx0-ax02>-1.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图,在四面体ABCD中,平面ADC⊥平面ABC,△ADC是以AC为斜边的等腰直角三角形,已知EB⊥平面ABC,AC=2EB.
(Ⅰ)求证:DE∥平面ABC;
(Ⅱ)若AC⊥BC,AC=1,BC=2,求四面体DBCE的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知数列{an}满足a1=1,an+1=2an+1.
(Ⅰ)证明:{an+1}是等比数列,并求{an}的通项公式;
(Ⅱ)记${b_n}=\frac{1}{{{{[{{log}_2}({a_n}+1)]}^2}+{{log}_2}({a_n}+1)}}$,设Sn为数列{bn}的前项和,证明:Sn<1.

查看答案和解析>>

同步练习册答案