相关习题
 0  245330  245338  245344  245348  245354  245356  245360  245366  245368  245374  245380  245384  245386  245390  245396  245398  245404  245408  245410  245414  245416  245420  245422  245424  245425  245426  245428  245429  245430  245432  245434  245438  245440  245444  245446  245450  245456  245458  245464  245468  245470  245474  245480  245486  245488  245494  245498  245500  245506  245510  245516  245524  266669 

科目: 来源: 题型:选择题

6.已知△ABC是边长为2的正三角形,点P是△ABC内一点,且$\overrightarrow{PA}$+2$\overrightarrow{PB}$+3$\overrightarrow{PC}$=$\overrightarrow{0}$.则$\overrightarrow{PA}$•$\overrightarrow{PB}$等于(  )
A.-$\frac{2}{9}$B.-$\frac{1}{9}$C.$\frac{2}{9}$D.$\frac{8}{9}$

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知函数f(x)=sin2x•g(x)=1+$\frac{1}{2}$sin2x.
(1)若A是f(x)图象上的一个最高点,B是g(x)图象上的最低点,试求|AB|的最小值;
(2)求函数f(x)+g(x)的单调增区间.

查看答案和解析>>

科目: 来源: 题型:填空题

4.在△ABC中,$\overrightarrow{AB}=(\sqrt{2},\sqrt{3}),\overrightarrow{AC}=(1,\sqrt{2})$,则△ABC的面积为$1-\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

3.对定义在[0,1]上,并且同时满足以下两个条件的函数f(x)称为M函数:
(i) 对任意的x∈[0,1],恒有f(x)≥0;
(ii) 当x1≥0,x2≥0,x1+x2≤1时,总有f(x1+x2)≥f(x1)+f(x2)成立.
则下列四个函数中不是M函数的个数是(  )
①f(x)=x2②f(x)=x2+1
③f(x)=ln(x2+1)④f(x)=2x-1.
A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:选择题

2.在平面直角坐标系中,若P(x,y)满足$\left\{\begin{array}{l}x-4y+4≤0\\ 2x+y-10≤0\\ 5x-2y+2≥0\end{array}\right.$,则x+2y的最大值是(  )
A.2B.8C.14D.16

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知抛物线C:x2=2py(p>0)的焦点是F,准线是l,经过C上两点A、B分别作C的切线l1、l2
(Ⅰ)若l1交y轴于点D,求证:△AFD为等腰三角形;
(Ⅱ)设l1与l2交于点E在l上,求证:三点A、B、F共线.

查看答案和解析>>

科目: 来源: 题型:选择题

20.设函数f(x)满足f′(x)>f(x),则一定成立的是(  )
A.2f(ln3)>3f(ln2)B.2f(ln3)<3f(ln2)C.3f(ln3)>2f(ln2)D.3f(ln3)<2f(ln2)

查看答案和解析>>

科目: 来源: 题型:选择题

19.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线与圆(x-3)2+y2=9相交于A、B两点,若|AB|=2,则该双曲线的离心率为(  )
A.8B.2$\sqrt{2}$C.$\frac{3}{2}$D.3

查看答案和解析>>

科目: 来源: 题型:解答题

18.如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠DAB=45°,PD⊥平面ABCD,PD=AD=1,点E为AB上一点,且$\frac{AE}{AB}$=k,0<k<1,点F为PD中点.
(1)若k=$\frac{1}{2}$,求证:AF∥平面PEC;
(2)是否存在一个常数k,使得三棱锥C-PEB的体积等于四棱锥P-ABCD的体积的$\frac{1}{3}$,若存在,求出k的值;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

17.直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=-2+\sqrt{3}t\\ y=t\end{array}\right.$(t为参数),以原点O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4cosθ,直线l与曲线C的公共点为M.
(Ⅰ)求点M的极坐标;
(Ⅱ)经过M点的直线l'被曲线C截得的线段长为2,求直线l'的极坐标方程.

查看答案和解析>>

同步练习册答案