分析 (1)作FM∥CD交PC于M,证明四边形AEMF为平行四边形,得到AF∥EM,利用直线与平面平行的判定定理证明直线AF∥平面PEC.
(2)通过求解VC-PEB=VP-CEB,VP-ABCD,列出方程即可求解常数k.
解答 (1)证明:作FM∥CD交PC于M.∴FM∥AE…(1分)
∵点F为PD中点,∴FM=$\frac{1}{2}$CD.∵k=$\frac{1}{2}$,∴AE=$\frac{1}{2}$AB=FM,
∴AEMF为平行四边形,…(2分)
∴AF∥EM,…(3分)
∵AF?平面PEC,EM?平面PEC,
∴直线AF∥平面PEC.…(5分)
(2)解:VC-PEB=VP-CEB=$\frac{1}{3}×\frac{1}{2}(1-k)×1×\frac{\sqrt{2}}{2}×1$=$\frac{\sqrt{2}}{12}(1-k)$ …(7分)
${V}_{P-ABCD}=\frac{1}{3}×1×1×\frac{\sqrt{2}}{2}×1$=$\frac{\sqrt{2}}{6}$…(9分)
$\frac{\sqrt{2}}{12}(1-k)=\frac{1}{3}×\frac{\sqrt{2}}{6}$…(10分)
所以存在常数k=$\frac{1}{3}$…(12分)
点评 本题考查几何体的体积的求法,直线与平面平行的判定定理的应用,考查空间想象能力以及计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{1}{2}$ | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2 | D. | 无法确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com