精英家教网 > 高中数学 > 题目详情
10.若函数f(x)=x2|x-a|在区间[0,2]上单调递增,则实数a的取值范围a≤0或a≥3.

分析 写出分段函数f(x),然后分别利用导函数在[0,2]上大于等于0求解a的取值范围.

解答 解:f(x)=x2|x-a|=$\left\{\begin{array}{l}{{x}^{3}-a{x}^{2},x≥a}\\{-{x}^{3}+a{x}^{2},x<a}\end{array}\right.$,
当x≥a时,f(x)=x3-ax2,f′(x)=3x2-2ax,
要使f(x)在[0,2]上单调递增,则$\left\{\begin{array}{l}{a≤x}\\{3{x}^{2}-2ax≥0}\end{array}\right.$在[0,2]上恒成立,
由a≤x在[0,2]上恒成立,得a≤0;
对于3x2-2ax≥0,即2ax≤3x2,x=0时对任意a都成立,当x∈(0,2]时,$a≤\frac{3}{2}x$在[0,2]上恒成立,得a≤0;
当x<a时,f(x)=-x3+ax2,f′(x)=-3x2+2ax,
要使f(x)在[0,2]上单调递增,则$\left\{\begin{array}{l}{a>x}\\{-3{x}^{2}+2ax≥0}\end{array}\right.$在[0,2]上恒成立,
由a>x在[0,2]上恒成立,得a>2;
对于-3x2+2ax≥0,x=0时对任意a都成立,当x∈(0,2]时,$a≥\frac{3}{2}x$在[0,2]上恒成立,得a≥3,
∴当x<a时,满足f(x)在[0,2]上单调递增的a≥3.
综上,使函数f(x)=x2|x-a|在区间[0,2]上单调递增的实数a的取值范围是a≤0或a≥3.
故答案为:a≤0或a≥3.

点评 本题考查了函数单调性的性质,考查了利用导数研究函数的单调性,着重考查了分类讨论的数学思想方法,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.小明通过做游戏的方式来确定周末活动,他随机地往单位圆中投掷一点,若此点到圆心的距离大于$\frac{1}{2}$,则周末看电影;若此点到圆心的距离小于$\frac{1}{4}$,则周末打篮球;否则就在家看书.那么小明周末在家看书的概率是$\frac{3}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若实数x,y满足x+y=6,则f(x,y)=(x2+4)(y2+4)的最小值为144.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠DAB=45°,PD⊥平面ABCD,PD=AD=1,点E为AB上一点,且$\frac{AE}{AB}$=k,0<k<1,点F为PD中点.
(1)若k=$\frac{1}{2}$,求证:AF∥平面PEC;
(2)是否存在一个常数k,使得三棱锥C-PEB的体积等于四棱锥P-ABCD的体积的$\frac{1}{3}$,若存在,求出k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=sin2x•g(x)=1+$\frac{1}{2}$sin2x.
(1)若A是f(x)图象上的一个最高点,B是g(x)图象上的最低点,试求|AB|的最小值;
(2)求函数f(x)+g(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在直角坐标系xOy中,以原点O为极点,x轴非负半轴为极轴建立极坐标系,已知曲线M的极坐标方程为$\sqrt{2}ρcos(θ+\frac{π}{4})=1$,曲线N的参数方程为$\left\{\begin{array}{l}{x=4{t}^{2}}\\{y=4t}\end{array}\right.$(t为参数).若曲线M与N相交于A,B两点,则线段AB的长等于8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设数列{an}的前n项和为Sn,a1=1,an+1=λSn+1(n∈N*,λ≠-1),且a1、2a2、a3+3为等差数列{bn}的前三项.
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若等边△ABC的边长为6,平面内一点M满足$\overrightarrow{CM}$=$\frac{1}{3}$$\overrightarrow{CA}$+$\frac{1}{2}$$\overrightarrow{BC}$,则四边形ABCM的面积为$\frac{27\sqrt{3}}{2}$,$\overrightarrow{MA}•\overrightarrow{MB}$=34.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.平面直角坐标系中,把下面的直线或曲线的方程转化为极坐标方程.
(1)2x-3y=5;
(2)x2+y2=1.

查看答案和解析>>

同步练习册答案