相关习题
 0  245978  245986  245992  245996  246002  246004  246008  246014  246016  246022  246028  246032  246034  246038  246044  246046  246052  246056  246058  246062  246064  246068  246070  246072  246073  246074  246076  246077  246078  246080  246082  246086  246088  246092  246094  246098  246104  246106  246112  246116  246118  246122  246128  246134  246136  246142  246146  246148  246154  246158  246164  246172  266669 

科目: 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,底面ABCD为等腰梯形,且满足AB∥CD,AD=DC=$\frac{1}{2}$AB,PA⊥平面ABCD.
(1)求证:平面PBD⊥平面PAD;
(2)若PA=AB,求二面角A-PD-C的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

6.将一个半径适当的小球放入如图所示的容器自上方的入口处,小球自由下落,小气在下落的过程中,将遇到黑色障碍物3次,最后落入A袋或B袋中,已知小球每次遇到障碍物时,向左、右两边下落的概率分别是$\frac{1}{3}$,$\frac{2}{3}$
(Ⅰ)分别求出小球落入A袋和B袋中的概率;
(Ⅱ)在容器 入口处依次放入4个小球,记ξ为落入B袋中的小球个数,求ξ的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD=1,点E,F分别为AB和PD中点.
(Ⅰ)求证:直线AF∥平面PEC;
(Ⅱ)求PC与平面PAB所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:填空题

4.当且仅当x∈(a,b)∪(c,+∞)(其中b≤c)时,函数f(x)=2|x+1|的图象在g(x)=|2x-t|+x的图象的下方,则c+b-a的取值范围是(1,+∞).

查看答案和解析>>

科目: 来源: 题型:解答题

3.在如图所示的几何体中,四边形ABCD为平行四边形,∠ACD=90°,AB=1,AD=2,ABEF为正方形,平面ABEF⊥平面ABCD,P为线段DF上一点.
(1)若P为DF中点,求证:BF∥平面ACP;
(2)若二面角P-AC-F的正弦值为$\frac{\sqrt{5}}{5}$,求AP与平面ABCD所成角的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=CC1=2,A1B⊥B1C
(Ⅰ)证明:A1C1⊥CC1
(Ⅱ)若A1B=2$\sqrt{3}$,在棱CC1上是否存在点E,使得二面角E-AB1-C的大小为30°若存在,求CE的长,若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知函数f(x)=ax2+2blnx,曲线y=f(x)在点(2,f(2))处得切线方程为y=x+2-6ln2.
(1)求实数a,b的值;
(2)讨论f(x)的单调性,并求f(x)的极小值.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知函数f(x)=alnx+(x-1)2
(1)讨论函数f(x)的单调性;
(2)若函数f(x)有两个极值点x1,x2,且x1<x2,是否存在常数k∈[-1,0],使得f(x1)+f(x2)≥ka2恒成立?请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

19.设函数f(x)=-$\frac{1}{3}{x^3}+{x^2}+({m^2}-1)$x(x∈R),其中m>0.
(1)当m=$\frac{3}{2}$,求函数f(x)在区间[-2,2]上的最大值;
(2)已知函数f(x)有三个互不相同的零点0,x1,x2,且x1<x2,若对任意的x∈[x1,x2],f(x)>f(1)恒成立,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知函数f(x)=lnx-2x.
(1)求函数f(x)的最大值;
(2)当a>0时,不等式f(x)≥-ax2+ax-2在x∈[1,e]上恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案