相关习题
 0  246200  246208  246214  246218  246224  246226  246230  246236  246238  246244  246250  246254  246256  246260  246266  246268  246274  246278  246280  246284  246286  246290  246292  246294  246295  246296  246298  246299  246300  246302  246304  246308  246310  246314  246316  246320  246326  246328  246334  246338  246340  246344  246350  246356  246358  246364  246368  246370  246376  246380  246386  246394  266669 

科目: 来源: 题型:选择题

9.若直线y=-x+1与椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)相交于A,B两点,且以AB为直径的圆经过点O(其中O为坐标原点)当椭圆C的离心率e$∈[\frac{1}{2},\frac{\sqrt{3}}{2}]$时椭圆C的长轴长的最大值是(  )
A.$\sqrt{10}$B.$\frac{\sqrt{10}}{2}$C.3D.$\frac{3}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,在多面体ABCDEF中,四边形ABCD为菱形,∠ABC=60°,EC⊥面ABCD,FA⊥面ABCD,G为BF的中点,若EG⊥面ABF,AB=2.
(1)求证:EG∥面ABCD;
(2)若AF=AB,求二面角B-EF-D的余弦值.

查看答案和解析>>

科目: 来源: 题型:填空题

7.平行六面体ABCD-A1B1C1D1中,∠A1AD=∠A1AB=60°,DAB=90°,A1A=3,AB=2,AD=1,则其对角线AC1的长为$\sqrt{23}$.

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD是一个直角梯形,AB∥CD,∠ABC=90°,CD=3,BC=2,AB=A1B=5.
(1)试判断AB1与平面A1C1D是否平行,请说明理由;
(2)若A1A=A1D,点O在棱AB上,AO=2,cos∠ABA1=$\frac{3}{5}$,求CC1与平面OA1C1所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知椭圆的两焦点为F1(-1,0)、F2(1,0),P为椭圆上一点,P到F1的距离的最大值为3.
(1)求椭圆的方程;
(2)过点F1的直线交椭圆与A、B两点,求当三角形ABF2的面积最大时直线AB的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图,在四棱锥 P-A BCD中,底面 A BCD为正方形,平面 P AD⊥底面 A BCD,点 E在棱 PD上,且 A E⊥PD.
(Ⅰ)求证:平面 A B E⊥平面 PCD;
(Ⅱ)已知 PD与底面 A BCD所成角为30°,求二面角 E-AC-D的正切值.

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图,在四棱锥 P-ABCD中,底面ABCD是边长为2的正方形,平面PAD⊥底面 ABCD,E在棱PD上,且AE⊥PD.
(Ⅰ)求证:平面ABE⊥平面PCD;
(Ⅱ)已知AE与底面ABCD所成角为60°,求二面角C-BE-D的正切值.

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{3}}{2}$,过左焦点F的直线与椭圆相交于A、B两点,且有$\frac{1}{|AF|}$+$\frac{1}{|BF|}$=2,则椭圆的长半轴长a的值为(  )
A.2$\sqrt{3}$B.4C.3$\sqrt{2}$D.6

查看答案和解析>>

科目: 来源: 题型:解答题

1.直线l:bx+ay=ab(a>0,b>0)与x轴,y轴的交点分别是A,B,O为坐标原点,△OAB的面积是$\frac{2\sqrt{3}}{3}$,直线l的倾斜角是150°,A,B两点是中点在坐标原点的椭圆C的两个顶点.
(1)求椭圆C的标准方程;
(2)若直线l:y=x+m与椭圆C交于M,N两点,求△OMN的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的四个顶点所构成的菱形的边长是$\sqrt{5}$,面积是4,圆R:(x-4)2+y2=r2(6>r>2)与椭圆C交于点M与点N,连接RM并延长交椭圆于点P.
(1)求椭圆C的方程;
(2)设椭圆的右顶点为A,当$\overrightarrow{AM}•\overrightarrow{AN}$取最小值时,求r的值;
(3)试问,当r变化时,直线NP是否与x轴交于一个定点?若是,求出该定点的坐标;若不是,说明理由.

查看答案和解析>>

同步练习册答案