相关习题
 0  246721  246729  246735  246739  246745  246747  246751  246757  246759  246765  246771  246775  246777  246781  246787  246789  246795  246799  246801  246805  246807  246811  246813  246815  246816  246817  246819  246820  246821  246823  246825  246829  246831  246835  246837  246841  246847  246849  246855  246859  246861  246865  246871  246877  246879  246885  246889  246891  246897  246901  246907  246915  266669 

科目: 来源: 题型:解答题

10.如图,中心在原点的椭圆的焦点在x轴上,长轴长为4,焦距为2$\sqrt{3}$,O为坐标原点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)是否存在过M(0,2)的直线与椭圆交于A,B两个不同点,使以AB为直径的圆过原点?若存在,求出直线方程,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{3}}}{2}$,且椭圆C经过点(0,1).
(Ⅰ)求椭圆C的方程;
(Ⅱ)椭圆C上的动点P(x0,y0)(x0y0≠0),其中点P在x轴上的射影为点N,点P关于原点O的对称点为点Q,求△PQN面积的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知椭圆C的中心在原点O,焦点在x轴上,离心率为$\frac{1}{2}$,右焦点到右顶点的距离为1
(1)求椭圆C的方程;
(2)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M、N是直线l上的两点F1、F2是椭圆的左右焦点,且F1M⊥l,F2N⊥l,求四边形F1MNF2面积S的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

7.设点A,B的坐标分别为(-a,0),(a,0),直线AC,BC相交于点C,且它们的斜率之积是-$\frac{{b}^{2}}{{a}^{2}}$(常数a,b为正实数).
(Ⅰ)求点C的轨迹E的方程;
(Ⅱ)设O为坐标原点,P,Q为轨迹E上的动点,且OP⊥OQ,求$\frac{1}{|OP{|}^{2}}$+$\frac{1}{|OQ{|}^{2}}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点与抛物线y2=8$\sqrt{6}$x的焦点重合,且椭圆C的离心率e=$\frac{\sqrt{6}}{3}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线x=t(t>0)与椭圆C交于不同的两点A、B,以线段AB为直径作圆M,若圆M与y轴相切,求直线x-$\sqrt{3}$y+1=0被圆M所截得的弦长.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知:椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{1}{2}$,短半轴长为$\sqrt{3}$;斜率为$\frac{b}{a}$的动直线l与椭圆C交于A,B两点,与x轴,y轴相交于P,Q两点(如图所示).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)试探究$\frac{|AP|}{|BQ|}$是否为定值?若是定值,试求出该定值;若不是定值,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

4.在平面直角坐标系xOy中,椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{2\sqrt{2}}}{3}$,长轴长为6.
(I)求椭圆C的方程;
(Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且AD⊥AB,直线BD与x轴、y轴分别交于M,N两点.
(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值;
(ii)求△OMN面积的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图已知椭圆G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右两个焦点分别为F1、F2,设A(0,b),若△AF1F2为正三角形且周长为6.
(1)求椭圆G的标准方程;
(2)已知垂直于x轴的直线交椭圆G于不同的两点B,C,且A1,A2分别为椭圆的左顶点和右顶点,设直线A1C与A2B交于点P(x0,y0),求证:点P(x0,y0)在双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1上;
(3)在(2)的条件下,过点P作斜率为$\frac{3{x}_{0}}{4{y}_{0}}$的直线l,设原点到直线l的距离为d,求d的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图已知椭圆G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右两个焦点分别为F1、F2,设A(0,b),若△AF1F2为正三角形且周长为6.
(1)求椭圆G的标准方程;
(2)已知垂直于x轴的直线交椭圆G于不同的两B,C,且A1,A2分别为椭圆的左顶点和右顶点,设直线A1C与A2B交于点P(x0,y0),求点P(x0,y0)的轨迹方程;
(3)在(2)的条件下,过点P作斜率为$\frac{3{x}_{0}}{4{y}_{0}}$的直线l,设原点到直线l的距离为d,求d的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知椭圆C的中心在原点,焦点在x轴上,焦距为2,离心率为$\frac{1}{2}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设直线l经过点M(0,1),且与椭圆C交于A,B两点,若$\overrightarrow{AM}$=2$\overrightarrow{MB}$,求直线l的方程.

查看答案和解析>>

同步练习册答案