精英家教网 > 高中数学 > 题目详情
2.如图已知椭圆G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右两个焦点分别为F1、F2,设A(0,b),若△AF1F2为正三角形且周长为6.
(1)求椭圆G的标准方程;
(2)已知垂直于x轴的直线交椭圆G于不同的两B,C,且A1,A2分别为椭圆的左顶点和右顶点,设直线A1C与A2B交于点P(x0,y0),求点P(x0,y0)的轨迹方程;
(3)在(2)的条件下,过点P作斜率为$\frac{3{x}_{0}}{4{y}_{0}}$的直线l,设原点到直线l的距离为d,求d的取值范围.

分析 (1)由题设得 $\left\{\begin{array}{l}{a=2c}\\{a+a+2c=6}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$ 解得a,b,c.求得椭圆方程.
(2)分别设出直线A1C的方程和直线A2B的方程,两条直线相乘代入椭圆,证得结论.
(3)设直线l:$y-{y}_{0}=\frac{3{x}_{0}}{4{y}_{0}}(x-{x}_{0})$,结合第(2)问的结论得出相应结论

解答 解:(1)由题设得 $\left\{\begin{array}{l}{a=2c}\\{a+a+2c=6}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$ 解得:$a=2,b=\sqrt{3}$,c=1
故C的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.(4分)
(2)证明:设B(x1,y1)则C(x1,-y1),A1(-2,0),A2(2,0)
∴直线A1C的方程为y=$\frac{-y1}{{x}_{1}+2}(x+2)$  ①(5分)
直线A2B的方程为y=$\frac{{y}_{1}}{{x}_{1}-2}(x-2)$   ②(6分)
①×②,得 ${y}^{2}=\frac{-{y}_{1}^{2}}{{x}_{1}^{2}-4}({x}^{2}-4)$   ③
$\frac{{x}_{1}^{2}}{4}+\frac{{y}_{1}^{2}}{3}=1$,∴$3{x}_{1}^{2}+4{y}_{1}^{2}=12$,∴${y}_{1}^{2}$=$\frac{-3({x}_{1}^{2}-4)}{4}$,
代入③得${y}^{2}=\frac{3}{4}({x}^{2}-4)$,即$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{3}=1$,(8分)
因为点P(x0,y0)是直线A1C与A2B的交点,所以$\frac{{x}_{0}^{2}}{4}-\frac{{y}_{0}^{2}}{3}=1$
即点P(x0,y0)在双曲线$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{3}=1$上(9分)
(3)设直线l:$y-{y}_{0}=\frac{3{x}_{0}}{4{y}_{0}}(x-{x}_{0})$(10分)
结合第(2)问的结论$\frac{{x}_{0}^{2}}{4}-\frac{{y}_{0}^{2}}{3}=1$,整理得:3x0x-4y0y-12=0(12分)
于是$d=\frac{12}{\sqrt{9{x}_{0}^{2}+16{y}_{0}^{2}}}=\frac{12}{\sqrt{21{x}_{0}^{2}-48}}$(14分)
$3{x}_{0}^{2}-{4}_{0}^{2}=12$且y0≠0∴${x}_{0}^{2}>4$∴$d=\frac{12}{\sqrt{21{x}_{0}^{2}-48}}∈(0,2)$
所以d的取值范围是 (0,2)(16分)

点评 本题主要考查直线与圆锥曲线的综合问题,有范围,有证明,综合性很强,难度很大,在高考中常作为压轴题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.一个由若干行数字组成的数表,从第二行起,每一行中的数字均等于其肩上两个数字之和,最后一行仅有一个数,第一行是前100个正整数按从小到大排成的行,则最后一行的数是101×298

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{alnx+b}{{e}^{x}}$(e是自然对数的底数,其中常数a,n满足a>b,且a+b=1,函数y=f(x)的图象在点(1,f(1))处的切线斜率是2-$\frac{1}{a}$.
(Ⅰ)求a,b的值;
(Ⅱ)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}的公差为d(d≠0),等比数列{bn}的公比为q(q>0),且满足a1=b1=1,a2=b3,a6=b5.(1)求数列{an}的通项公式;
(2)证明:对一切n∈N*,令bn=an•an+1,都有$\frac{1}{4}$≤$\frac{1}{{b}_{1}}$+$\frac{1}{{b}_{2}}$+…+$\frac{1}{{b}_{n}}$<$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,四边形ABCD为平行四边形,AB=5,AD=4,BD=3,将△BCD沿着BD翻折到平面BC1D处(不与平面ABCD重合),E,F分别为对边AB,C1D的中点,
(Ⅰ)求证:EF⊥BD;
(Ⅱ)若异面直线EF,BC1所成的角为30°,求二面角C1-AB-D的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设点A,B的坐标分别为(-a,0),(a,0),直线AC,BC相交于点C,且它们的斜率之积是-$\frac{{b}^{2}}{{a}^{2}}$(常数a,b为正实数).
(Ⅰ)求点C的轨迹E的方程;
(Ⅱ)设O为坐标原点,P,Q为轨迹E上的动点,且OP⊥OQ,求$\frac{1}{|OP{|}^{2}}$+$\frac{1}{|OQ{|}^{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,设F为抛物线y2=2px(p>0)的焦点,P是抛物线上一定点,其坐为(x0,y0)(x0≠0),Q为线段OF的垂直平分线上一点,且点Q到抛物线的准线l的距离为$\frac{3}{2}$.
(1)求抛物线的方程;
(2)过点P任作两条斜率均存在的直线PA、PB,分别与抛物线交于点A、B,如图示,若直线AB的斜率为定值-$\frac{2}{{y}_{0}}$,求证:直线PA、PB的倾斜角互补.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求函数y=arctan($\sqrt{2}$sinx-cosx)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知方程$\frac{x^2}{4-m}+\frac{y^2}{m-1}$=1(m是常数)表示曲线C,给出下列命题:
①曲线C不可能为圆;
②曲线C不可能为抛物线;
③若曲线C为双曲线,则m<1或m>4;
④若曲线C为焦点在x轴上的椭圆,则1<m<$\frac{5}{2}$.
其中真命题的编号为②③④.

查看答案和解析>>

同步练习册答案