相关习题
 0  246730  246738  246744  246748  246754  246756  246760  246766  246768  246774  246780  246784  246786  246790  246796  246798  246804  246808  246810  246814  246816  246820  246822  246824  246825  246826  246828  246829  246830  246832  246834  246838  246840  246844  246846  246850  246856  246858  246864  246868  246870  246874  246880  246886  246888  246894  246898  246900  246906  246910  246916  246924  266669 

科目: 来源: 题型:解答题

20.已知函数f(x)=alnx+$\frac{a}{2}$x2+x,g(x)=$\frac{a-2}{2}$x2+(a+1)x+$\frac{a+2}{2}$;
(1)若f(x)在(1,f(1))处的切线方程为x+y+b=0,求a,b的值;
(2)是否存在实数a使得f(x)在(0,+∞)上单调递减,g(x)在(0,$\frac{1}{5}$)上单调递增,若存在,求出a的值,若不存在,请说明理由.
(3)令H(x)=f(x+1)-g(x),若x1,x2(x1<x2)是H(x)的两个极值点,证明:(-$\frac{1}{2}$+ln2)x1<H(x2)<0.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知F1、F2分别为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点,A1、A2分别为其左、右顶点,过F2且与x轴垂直的直线l与椭圆相交于M、N两点.若四边形A1MA2N的面积等于2,且满足|$\overrightarrow{{A}_{1}{F}_{2}}$|=$\sqrt{2}$|$\overrightarrow{MN}$|+|$\overrightarrow{{A}_{2}{F}_{2}}$|.
(1)求此椭圆的方程;
(2)设⊙O的直径为F1F2,直线l:y=kx+m与⊙O相切,并与椭圆交于不同的两点P、Q,若$\overrightarrow{OP}$•$\overrightarrow{OQ}$=λ,且λ∈[$\frac{2}{3}$,$\frac{3}{4}$],求△POQ的面积S的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

18.某电视台推出一档游戏类综艺节目,选手面对1-5号五扇大门,依次按响门上的门铃,门铃会播放一段音乐,选手需正确回答这首歌的名字,回答正确,大门打开,并获得相应的家庭梦想基金,回答每一扇门后,选手可自由选择带着目前的奖金离开,还是继续挑战后面的门以获得更多的梦想基金,但是一旦回答错误,游戏结束并将之前获得的所有梦想基金清零;整个游戏过程中,选手有一次求助机会,选手可以询问亲友团成员以获得正确答案.
1-5号门对应的家庭梦想基金依次为3000元、6000元、8000元、12000元、24000元(以上基金金额为打开大门后的累积金额,如第三扇大门打开,选手可获基金总金额为8000元);设某选手正确回答每一扇门的歌曲名字的概率为pi(i=1,2,…,5),且pi=$\frac{6-i}{7-i}$(i=1,2,…,5),亲友团正确回答每一扇门的歌曲名字的概率均为$\frac{1}{5}$,该选手正确回答每一扇门的歌名后选择继续挑战后面的门的概率均为$\frac{1}{2}$;
(1)求选手在第三扇门使用求助且最终获得12000元家庭梦想基金的概率;
(2)若选手在整个游戏过程中不使用求助,且获得的家庭梦想基金数额为X(元),求X的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图,在多面体ABCDEF中,BA⊥BE,BA⊥BC,BE⊥BC,AB∥EF,CD∥BE,AB=BE=2,BC=CD=EF=1,G在线段AB上,且BG=3GA.
(1)求证:CG∥平面ADF;
(2)求直线DE与平面ADF所成的角的正弦值;
(3)求锐二面角B-DF-A的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

16.设△ABC的内角A、B、C所对的边分别为a、b、c,且a+b=6,c=2,cosC=$\frac{7}{9}$.
(Ⅰ)求a、b的值;
(Ⅱ)求sin(A-C)的值.

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知函数f(x)=ex+x2(x<0),g(x)=x2-4x+$\frac{9}{2}$+ln(x+t-2),若f(x)的图象上存在一点P,它关于直线x=1的对称点P′落在y=g(x)的图象上,则t的取值范围是(  )
A.(-∞,$\frac{1}{\sqrt{e}}$)B.(-$\sqrt{e}$,$\frac{1}{\sqrt{e}}$)C.(-$\frac{1}{\sqrt{e}}$,$\sqrt{e}$)D.(0,$\sqrt{e}$)

查看答案和解析>>

科目: 来源: 题型:选择题

14.已知函数f(x)=ex的图象与函数g(x)=|ln(-x)|的图象有两个交点A(x1,y1),B(x2,y2),则(  )
A.$\frac{1}{10}$<x1x2<$\frac{1}{e}$B.$\frac{1}{e}$<x1x2<1C.1<x1x2<eD.x1x2>e

查看答案和解析>>

科目: 来源: 题型:选择题

13.已知f(x)=sin(2015x+$\frac{3π}{8}$)+sin(2015x-$\frac{π}{8}$)的最大值为A,若存在实数x1,x2,使得对任意实数x总有f(x1)≤f(x)≤f(x2)成立,则A|x1-x2|的最小值为(  )
A.$\frac{\sqrt{2}π}{2015}$B.$\frac{2\sqrt{2}π}{2015}$C.$\frac{2π}{2015}$D.$\frac{4π}{2015}$

查看答案和解析>>

科目: 来源: 题型:选择题

12.如图所示,一个圆形靶子的中心是一个“心形”图案,其中“心形”图案是由上边界C1(虚线L上方部分)与下边界C2(虚线L下方部分)围成,曲线C1是函数y=$\sqrt{1-{x}^{2}}$+x${\;}^{\frac{4}{5}}$ 的图象,曲线C2是函数y=-$\sqrt{1-{x}^{2}}$+x${\;}^{\frac{2}{7}}$ 的图象,圆的方程为x2+y2=8,某人向靶子射出一箭(假设此人此箭一定能射中靶子且射中靶中任何一点是等可能的),则此箭恰好命中“心形”图案的概率为(  )
A.$\frac{1}{4}$-$\frac{1}{18π}$B.$\frac{1}{16}$-$\frac{1}{18π}$C.$\frac{1}{8}$+$\frac{1}{18π}$D.$\frac{1}{8}$+$\frac{36}{35π}$

查看答案和解析>>

科目: 来源: 题型:选择题

11.运行如下程序框图,如果输入的x∈(-∞,1],则输出的y属于(  )
A.[-$\frac{1}{e}$,0]B.[-$\frac{1}{e}$,0)C.[-$\frac{1}{e}$,+∞)D.[-$\frac{1}{e}$,e)

查看答案和解析>>

同步练习册答案