相关习题
 0  246835  246843  246849  246853  246859  246861  246865  246871  246873  246879  246885  246889  246891  246895  246901  246903  246909  246913  246915  246919  246921  246925  246927  246929  246930  246931  246933  246934  246935  246937  246939  246943  246945  246949  246951  246955  246961  246963  246969  246973  246975  246979  246985  246991  246993  246999  247003  247005  247011  247015  247021  247029  266669 

科目: 来源: 题型:填空题

3.若函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,}&{x>0}\\{f(x+3),}&{x≤0}\end{array}\right.$,g(x)=x2,则f(9)=2,g[f(3)]=1,f[f($\frac{1}{9}$)]=0.

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知定义域为R的函数f(x)=$\frac{2a+2bx+sinx+(a+bx)cosx}{2+cosx}$(a,b∈R)有最大值和最小值,且最大值与最小值的和为8,则2a-3b=(  )
A.7B.8C.9D.1

查看答案和解析>>

科目: 来源: 题型:选择题

1.如图,F是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的右焦点,过F作渐近线的垂线,垂足为P,与另一条渐近线相交于Q,若|PF|=|PQ|,则C的离心率为(  )
A.$\sqrt{3}$B.2$\sqrt{2}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目: 来源: 题型:选择题

20.下列四个命题中,正确的是(  )
A.若平面α∥平面β,直线m∥平面α,则m∥β
B.若平面α⊥平面γ,且平面β⊥平面γ,则α∥β
C.平面α⊥平面β,其α∩β=l,点A∈α,A∉l,若直线AB⊥l,则AB⊥β
D.直线m,n为异面直线,且m⊥平面α,n⊥平面β,若m⊥n,则α⊥β

查看答案和解析>>

科目: 来源: 题型:选择题

19.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,且|$\overrightarrow{b}$|=2,$\overrightarrow{b}$$•(2\overrightarrow{a}-\overrightarrow{b})$=0,则|$\overrightarrow{a}$|的最小值为(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目: 来源: 题型:选择题

18.“x<1”是“log2x<0”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目: 来源: 题型:选择题

17.如图,$\overrightarrow{OC}=2\overrightarrow{OP}$,$\overrightarrow{AB}=2\overrightarrow{AC}$,$\overrightarrow{OM}=m\overrightarrow{OB}$,$\overrightarrow{ON}=n\overrightarrow{OA}$,若m=$\frac{3}{8}$,那么n=(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{4}{5}$

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1.
(1)求证:BC⊥平面ACFE.
(2)点M是线段EF上任意一点,求三棱锥B-ACM的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知等差数列{an}的前n项和为Sn,且满足:a2+a4=14,S7=70.
(1)求数列{an}的通项公式;
(2)设Tn=2Sn-7n,求Tn的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

14.在△ABC中,角A,B,C所对应的边分别为a,b,c,$\frac{c-a}{b-a}$=$\frac{sinB}{sinA+sinC}$.
(1)求角C的大小;
(2)若c=2$\sqrt{3}$且sinA=2sinB,求△ABC的面积.

查看答案和解析>>

同步练习册答案