相关习题
 0  246900  246908  246914  246918  246924  246926  246930  246936  246938  246944  246950  246954  246956  246960  246966  246968  246974  246978  246980  246984  246986  246990  246992  246994  246995  246996  246998  246999  247000  247002  247004  247008  247010  247014  247016  247020  247026  247028  247034  247038  247040  247044  247050  247056  247058  247064  247068  247070  247076  247080  247086  247094  266669 

科目: 来源: 题型:选择题

7.已知向量$\overrightarrow{a}=({e}^{x},1)$,向量$\overrightarrow{b}=(1,x-1)$,设函数f(x)=$\overrightarrow{a}•\overrightarrow{b}$,则函数f(x)的零点个数为(  )
A.1 个B.2 个C.3 个D.4 个

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•$\overrightarrow{b}$=-1,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知全集U=R,M={x|x2<2x},则∁UM=(  )
A.{x|X≥2}B.{x|x>2}C.{x|x≤0或x≥2}D.{x|0<x<2}

查看答案和解析>>

科目: 来源: 题型:解答题

4.根据下列算法语句,将输出的A值依次记为a1,a2,…,an,…,a2015
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)已知函数f(x)=a2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期是a1,且函数y=f(x)的图象关于直线x=$\frac{1}{6}$对称,求函数f(x)=a2sin(ωx+φ)在区间[-$\frac{1}{6}$,$\frac{1}{3}$]上的值域.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知f(x)=ex,g(x)=x-m(m∈R),设h(x)=f(x)•g(x).
(Ⅰ)求h(x)在[0,1]上的最大值.
(Ⅱ)当m=0时,试比较ef(x-2)与g(x)的大小,并证明.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知函数f(x)=$\frac{1-x}{ax}$+lnx
(Ⅰ)当a=1时,求函数f(x)的最小值;
(Ⅱ)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(Ⅲ)试比较($\frac{n+1}{n}$)n+1(n∈N*)与e(e为自然对数的底数)的大小.

查看答案和解析>>

科目: 来源: 题型:选择题

1.定义在实数集R上的函数f(x),对定义域内任意x满足f(x+2)-f(x-3)=0,且在区间(-1,4]上f(x)=x2-2x,则函数f(x)在区间(0,2015]上的零点个数为(  )
A.403B.806C.1209D.1208

查看答案和解析>>

科目: 来源: 题型:选择题

20.过椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{b}$=1(a>b>0)的左顶点A且斜率为k的直线交椭圆于另一个点B,且点B在x轴上的射影恰好为右焦点F,若0<k<$\frac{1}{3}$,则椭圆的离心率的取值范围是(  )
A.(0,$\frac{1}{3}$)B.($\frac{1}{3}$,1)C.(0,$\frac{2}{3}$)D.($\frac{2}{3}$,1)

查看答案和解析>>

科目: 来源: 题型:解答题

19.一个袋中有4个大小质地相同的小球,其中红球1个,白球2个(分别标号为1,2),黑球1个,现从袋中有放回的取球,每次随机取1个.
(1)求连续取两次都没取到白球的概率;
(2)若取1个红球记2分,取1个白球记1分,取1个回球记0分,连续取两次球,求分数之和为2或3的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

18.在如图所示的几何体中,四边形CDEF为正方形,四边形ABCD为等腰梯形,AB∥CD,AC=$\sqrt{3}$,AB=2BC=2,AC⊥FB.
(1)求三棱锥A-BCF的体积.
(2)线段AC上是否存在点M,使得EA∥平面FDM?证明你的结论.

查看答案和解析>>

同步练习册答案