相关习题
 0  247253  247261  247267  247271  247277  247279  247283  247289  247291  247297  247303  247307  247309  247313  247319  247321  247327  247331  247333  247337  247339  247343  247345  247347  247348  247349  247351  247352  247353  247355  247357  247361  247363  247367  247369  247373  247379  247381  247387  247391  247393  247397  247403  247409  247411  247417  247421  247423  247429  247433  247439  247447  266669 

科目: 来源: 题型:解答题

3.设函数f(x)=ax2+bx+c(a,b,c∈R).
(1)若f(1)=0,a>b>c,求证:$\sqrt{{b}^{2}-ac}$<$\sqrt{3}$a.
(2)若f(1)=-$\frac{a}{2}$,3a>2c>2b,求证:
①a>0,且-3<$\frac{b}{a}$<-$\frac{3}{4}$;
②函数f(x)在区间(0,2)内至少有一个零点.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知集合A={x|(x-1)(x-3a+4)<0,x∈R},B={x|$\frac{x-3}{x-2}$≥0,x∈R},
(1)当a=3时,求A∩B;
(2)若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

1.已知x∈R,若“4-2a≤x≤a+3”是“x2-4x-12≤0”的必要不充分条件,则实数a的取值范围是a>3.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知递增的等差数列{an}的首项a1=1,且a1、a2、a4成等比数列.
(1)求数列{an}的通项公式an
(2)设数列{cn}对任意n∈N*,都有$\frac{{c}_{1}}{2}$+$\frac{{c}_{2}}{{2}^{2}}$+…+$\frac{{c}_{n}}{{2}^{n}}$=an+1成立,求c1+c2+…+c2014的值
(3)若bn=$\frac{{a}_{n+1}}{{a}_{n}}$(n∈N*),求证:数列{bn}中的任意一项总可以表示成其他两项之积.

查看答案和解析>>

科目: 来源: 题型:填空题

19.记等差数列{an}的前n项和为Sn,已知a1=2,且数列{$\sqrt{{S}_{n}}$}也为等差数列,则a26的值为102.

查看答案和解析>>

科目: 来源: 题型:填空题

18.对于△ABC,有如下四个命题:
①若sin2A=sin2B,则△ABC为等腰三角形,
②若sinB=cosA,则△ABC是直角三角形
③若sin2A+sin2B<sin2C,则△ABC是钝角三角形
④若$\frac{a}{cos\frac{A}{2}}$=$\frac{b}{cos\frac{B}{2}}$=$\frac{c}{cos\frac{C}{2}}$,则△ABC是等边三角形.
其中正确的命题的序号是③④.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知函数f(x)=alnx+bx-x2
(Ⅰ)当a=b=1时,求方程f(x)=0的解;
(Ⅱ)当a=2时,f(x)的图象与x轴交于两点A(x1,0),B(x2,0)(0<x1<x2),常数p∈(0,$\frac{1}{2}$),求证:f′[px1+(1-p)x2]<0.

查看答案和解析>>

科目: 来源: 题型:选择题

16.正方形ABCD中,M为AD中点,在线段AB上任取一点P,在线段DC上任取一点Q,则么∠PMQ为锐角的概率为(  )
A.$\frac{3-2ln2}{4}$B.$\frac{1+2ln2}{4}$C.$\frac{3π}{16}$D.$\frac{16-3π}{16}$

查看答案和解析>>

科目: 来源: 题型:选择题

15.过抛物线C:x2=4y的焦点作垂直于对称轴的直线l,在第一象限内与C交于点P,则抛物线在点P处的切线方程为(  )
A.x-2y=0B.2x-y-3=0C.x-y+1=0D.x-y-1=0

查看答案和解析>>

科目: 来源: 题型:选择题

14.已知随机变量X~B(n,p),若EX=4,DX=2.4,则n=(  )
A.6B.8C.10D.12

查看答案和解析>>

同步练习册答案