相关习题
 0  247276  247284  247290  247294  247300  247302  247306  247312  247314  247320  247326  247330  247332  247336  247342  247344  247350  247354  247356  247360  247362  247366  247368  247370  247371  247372  247374  247375  247376  247378  247380  247384  247386  247390  247392  247396  247402  247404  247410  247414  247416  247420  247426  247432  247434  247440  247444  247446  247452  247456  247462  247470  266669 

科目: 来源: 题型:选择题

7.设函数f(x)=asin(πx+α)+bcos(πx+β)+4(其中a,b,α,β为非零实数),若f(2013)=5,则f(2014)的值为(  )
A.5B.3C.8D.不能确定

查看答案和解析>>

科目: 来源: 题型:选择题

6.设集合A={(x,y)||x|+|y|≤1},若动点P(x,y)∈A,则x2+(y-1)2≤2的概率是(  )
A.$\frac{π}{2}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.π

查看答案和解析>>

科目: 来源: 题型:选择题

5.定义域为R的函数f(x)=$\left\{\begin{array}{l}{-2x(x≤0)}\\{f(x-1)(0<x≤3)}\\{-3(x-4)^{2}+3(x>3)}\end{array}\right.$,若函数g(x)=f(x)-2x-a有且只有两个零点,则实数a的取值范围为(  )
A.{a|-6≤a<2}B.{a|-4≤a<2}∪{-5}∪{-6}C.{a|-5≤a<2}∪{-6}D.{a|-4≤a<2}∪{-$\frac{14}{3}$}∪{-6}

查看答案和解析>>

科目: 来源: 题型:填空题

4.曲线C的参数方程:$\left\{\begin{array}{l}{x=sinθ}\\{y=cos2θ}\end{array}\right.$的普通方程为y=1-2x2,x∈[-1,1].

查看答案和解析>>

科目: 来源: 题型:解答题

3.设a,b,c,d为正数,a+b+c+d=1,求a2+b2+c2+d2的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知函数f(x)=Asin(x+φ)(A>0,0<φ<π),x∈R的最大值是1,其图象经过点M($\frac{π}{3}$,$\frac{1}{2}$).
(1)求函数f(x)的解析式;
(2)已知f($\frac{π}{4}$-α)=-$\frac{4}{5}$,且α∈(-$\frac{3π}{4}$,-$\frac{π}{4}$),求$\frac{1+sin2α+cos2α}{1+tanα}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

1.设函数f(x)=$\sqrt{3}$sinxcosx+cos2x
(1)求函数f(x)的最小正周期;
(2)已知△ABC中,角A,B,C的对边分别为a,b,c,若f($\frac{A}{2}$)=$\frac{3}{2}$,b+c=2,求a的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

20.关于△ABC有如下命题:在正三角形ABC内部(不包括边界)任取一点P,P点到三边的距离分别为h1,h2,h3,则h1+h2+h3为定值,证明如下:连接PB、PC、PA,设△PBC、△PCA、△PAB的面积分别为S1,S2,S3,△ABC的面积为S,则有:S=S1+S2+S3⇒h=h1+h2+h3(其中h为△ABC的高),根据上述思维猜想在正四面体(四个面均为正三角形的三棱锥)中的结论,并对猜想进行证明.

查看答案和解析>>

科目: 来源: 题型:选择题

19.用数学归纳法证明:1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n}$=$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{n+n}$(n∈N*)时,在第二步证明从n=k到n=k+1成立时,左边增加的项数是(  )
A.1项B.2项C.3项D.4项

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知函数f(x)是偶函数,且x≥0时,f(x)=x2-2x+3,试求f(x)在R上的表达式,并画出图象,根据图象写出它的单调区间.

查看答案和解析>>

同步练习册答案