相关习题
 0  248155  248163  248169  248173  248179  248181  248185  248191  248193  248199  248205  248209  248211  248215  248221  248223  248229  248233  248235  248239  248241  248245  248247  248249  248250  248251  248253  248254  248255  248257  248259  248263  248265  248269  248271  248275  248281  248283  248289  248293  248295  248299  248305  248311  248313  248319  248323  248325  248331  248335  248341  248349  266669 

科目: 来源: 题型:选择题

20.设y=x-lnx,则此函数在区间(0,1)内为(  )
A.单调递增B.单调递减C.有增有减D.不确定

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知函数f(x)=$\frac{1}{3}{x^3}$-ax+1(a∈R).
(1)当x=1时,f(x)取得极值,求a的值;
(2)求f(x)在[0,1]上的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

18.定义:若两椭圆C1:$\frac{x^2}{{{a_1}^2}}+\frac{y^2}{{{b_1}^2}}=1,{C_2}:\frac{x^2}{{{a_2}^2}}+\frac{y^2}{{{b_2}^2}}$=1满足$\frac{a_2}{a_1}=\frac{b_2}{b_1}$=λ,则称椭圆C1与椭圆C2相似,相似比为λ,现有一系列相似椭圆Cn:$\frac{x^2}{{{a_n}^2}}+\frac{y^2}{{{b_n}^2}}$=1,满足a1=$\sqrt{2}$,b1=1,相似比λ=2,直线l:y=x与这一系列相似椭圆在第一象限内的交点分别为A1,A2,…,An,设αn=|AnAn+1|.
(1)求α1
(2)求证:{an}为等比数列,并求出其通项公式;
(3)令${β_n}={log_2}(\sqrt{3}{α_n})$,求证$\frac{β_1}{β_2}+\frac{{{β_1}•{β_3}}}{{{β_2}•{β_4}}}+…+\frac{{{β_1}•{β_3}•{β_5}…{β_{2n-1}}}}{{{β_2}•{β_4}•{β_6}…{β_{2n}}}}<\sqrt{2{β_n}+1}$-1.

查看答案和解析>>

科目: 来源: 题型:填空题

17.已知等差数列{an}中,a3=7,a6=16,将此等差数列的各项排成如下三角形数阵:则此数阵中第20行从左到右的第10个数是598.

查看答案和解析>>

科目: 来源: 题型:填空题

16.如果有穷数列a1,a2,a3,…,am(m为正整数)满足条件a1=am,a2=am-1,…,am=a1,即ai=am-i+1(i=1,2,…,m),我们称其为“对称数列”. 例如,数列1,2,5,2,1与数列8,4,2,2,4,8都是“对称数列”. 设{dn}是100项的“对称数列”,其中d51,d52,…,d100是首项为2,公差为3的等差数列.则d2=146;数列{dn}的前n项和Sn=$\left\{\begin{array}{l}{-\frac{3}{2}{n}^{2}+\frac{301}{2}n,}&{1≤n≤50}\\{\frac{3}{2}{n}^{2}-\frac{299}{2}n+7500,}&{51≤n≤100}\end{array}\right.$.

查看答案和解析>>

科目: 来源: 题型:选择题

15.在等差数列{an}中,已知a1+a2+a3=-24,a18+a19+a20=78,则S20等于(  )
A.160B.180C.200D.220

查看答案和解析>>

科目: 来源: 题型:选择题

14.已知函数g(x)=x2-3;f(x)是定义在  (-∞,0)∪(0,+∞)上的奇函数,且当x>0时,f(x)=log2x;那么函数y=f(x)•g(x)的大致图象为(  )
A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:选择题

13.A={x|(a-2)x2-2(a-2)x-4<0},若A=R(R为实数集),则实数a的取值范围为(  )
A.(-2,2)B.(-2,+∞)C.(-2,2]D.

查看答案和解析>>

科目: 来源: 题型:解答题

12.为了解某班学生喜欢打篮球是否与性别有关,对本班50人进行了问卷调查得到了下表:
喜爱打篮球不喜爱打篮球合计
男生20525
女生1015[25
合计302050
下面的临界值表供参考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
则根据以下参考公式可得随机变量K2的值(保留三位小数),你认为有多大的把握认为喜爱打篮球与性别有关.(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目: 来源: 题型:选择题

11.“直线l垂直于△ABC的边AB,AC”是“直线l垂直于△ABC的边BC”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分也非必要条件

查看答案和解析>>

同步练习册答案