相关习题
 0  249760  249768  249774  249778  249784  249786  249790  249796  249798  249804  249810  249814  249816  249820  249826  249828  249834  249838  249840  249844  249846  249850  249852  249854  249855  249856  249858  249859  249860  249862  249864  249868  249870  249874  249876  249880  249886  249888  249894  249898  249900  249904  249910  249916  249918  249924  249928  249930  249936  249940  249946  249954  266669 

科目: 来源: 题型:解答题

1.如图圆台的上下底面的圆心分别是E、A,点D在上底面圆周上,B、C在下底面圆周上,已知EA=1,ED=$\sqrt{3}$,AC=BC=2,BD=CD.
(1)求证:平面BDE⊥平面CDE;
(2)求多面体ABCDE的体积;
(3)求二面角A-EC-B的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图所示,已知三棱锥O-ABC的三条侧棱OA、OB、OC两两垂直,△ABC为等边三角形,M为△ABC内部一点,点P在OM的延长线上,且PA=PB.
(1)证明:OA=OB;
(2)证明:平面PAB⊥平面POC;
(3)若AP:PO:OC=$\sqrt{5}$:$\sqrt{6}$:1,求二面角P-OA-B的余弦值.

查看答案和解析>>

科目: 来源: 题型:填空题

19.已知平面向量满足:$\overrightarrow{PA}$⊥$\overrightarrow{PB}$,$\overrightarrow{PA}$+$\overrightarrow{PB}$=$\overrightarrow{PM}$,|$\overrightarrow{QA}$|=|$\overrightarrow{QB}$|=2,若|$\overrightarrow{QM}$|<1,则|$\overrightarrow{PQ}$|的取值范围是$(\sqrt{7},2\sqrt{2}]$.

查看答案和解析>>

科目: 来源: 题型:解答题

18.如图,在边长为4的菱形ABCD中,∠DAB=60°,点E、F分别是边CD、CB的中点,AC交EF于点O,沿EF将△CEF翻折到△PEF,连接PA、PB、PD,得到五棱锥P-ABFED,且PB=$\sqrt{10}$.

(1)求证:BD⊥平面POA;
(2)求四棱锥P-BDEF的体积;
(3)求二面角B-AP-O的正切值.

查看答案和解析>>

科目: 来源: 题型:填空题

17.已知正三棱锥P-ABC中,M,N分别是AB,AP的中点,若MN⊥CN,则此正三棱锥的侧面积与底面ABC的面积之比为$\sqrt{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

16.已知三棱柱ABC-A1B1C1中,点P在棱AA1上,若三棱锥P-BB1C1与三棱锥P-A1B1C1的体积比为3,则$\frac{P{A}_{1}}{PA}$=$\frac{1}{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

15.正四棱锥P-ABCD内接于球,底面ABCD是和球心O在同一平面内,球的体积为$\frac{8\sqrt{2}π}{3}$,则正四棱锥P-ABCD的表面积为 (  )
A.4$\sqrt{3}$B.4+4$\sqrt{3}$C.4+4$\sqrt{2}$D.4+8$\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

14.已知正方体ABCD-A1B1C1D1的棱长为a,定点M在棱AB上(不在端点A、B上),点P是平面ABCD内的动点,且点P到直线A1D1的距离与点P到点M的距离的平方差为a2,则点P的轨迹所在曲线为(  )
A.抛物线B.双曲线C.直线D.

查看答案和解析>>

科目: 来源: 题型:选择题

13.在正方体ABCD-A1B1C1D1中,截面BC1D内的动点P到平面ABCD的距离到顶点C1的距离相等,则动点P的轨迹的离心率为(  )
A.$\frac{\sqrt{6}}{3}$B.$\frac{\sqrt{6}}{2}$C.1D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目: 来源: 题型:填空题

12.已知四面体ABCD,下列命题:
①若AB⊥CD,则AC⊥BD;
②若AC=BC=AD=BD,则AB⊥CD;
③若点E,F分别在BC,BD上,且CD∥平面AEF,则EF是△BCD的中位线;
④若E是CD中点,则CD⊥平面ABE;
⑤在棱AB上任取一点P,使三棱锥P-BCD的体积与四面体ABCD的体积比大于$\frac{1}{3}$的概率为$\frac{2}{3}$.
其中正确的命题的序号是②⑤(填写所有真命题序号)

查看答案和解析>>

同步练习册答案