科目: 来源: 题型:
【题目】如图,在五棱锥中,平面,∥,∥,∥,, ,,是等腰三角形.
(1)求证:平面平面;
(2)求侧棱上是否存在点,使得与平面所成角大小为,若存在,求出点位置,若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】(本小题满分12分)已知函数()的最小正周
期为,
(Ⅰ)求的值;
(Ⅱ)将函数的图像上各点的横坐标缩短到原来的,纵坐标不变,得到函数
的图像,求函数在区间上的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】若函数在区间上, , , , , , 均可为一个三角形的三边长,则称函数为“三角形函数”.已知函数在区间上是“三角形函数”,则实数的取值范围为( )
A. B.
C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】 在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东且与点A相距40海里的位置B,经过40分钟又测得该船已行驶到点A北偏东+(其中sin=,)且与点A相距10海里的位置C.
(I)求该船的行驶速度(单位:海里/小时);
(II)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,直三棱柱中,,,是的中点,是等腰三角形,为的中点,为上一点.
(I)若平面,求;
(II)平面将三棱柱分成两个部分,求较小部分与较大部分的体积之比.
查看答案和解析>>
科目: 来源: 题型:
【题目】某企业生产A,B两种产品,生产1吨A种产品需要煤4吨、电18千瓦;生产1吨B种产品需要煤1吨、电15千瓦。现因条件限制,该企业仅有煤10吨,并且供电局只能供电66千瓦,若生产1吨A种产品的利润为10000元;生产1吨B种产品的利润是5000元,试问该企业如何安排生产,才能获得最大利润?
查看答案和解析>>
科目: 来源: 题型:
【题目】关于空间直角坐标系中的一点,有下列说法:
①点到坐标原点的距离为;
②的中点坐标为;
③点关于轴对称的点的坐标为;
④点关于坐标原点对称的点的坐标为;
⑤点关于坐标平面对称的点的坐标为.
其中正确的个数是
A. B. C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的离心率为,点在椭圆上.
(I)求椭圆的方程;
(II)设动直线与椭圆有且仅有一个公共点,判断是否存在以原点为圆心的圆,满足此圆与相交于两点(两点均不在坐标轴上),且使得直线的斜率之积为定值?若存在,求此圆的方程;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某大学生在开学季准备销售一种文具盒进行试创业,在一个开学季内,每售出1盒该产品获利润50元,未售出的产品,每盒亏损30元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了160盒该产品,以(单位:盒,)表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.
(I)根据直方图估计这个开学季内市场需求量的众数和中位数;
(II)将表示为的函数;
(III)根据直方图估计利润不少于4800元的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com