科目: 来源: 题型:
【题目】如图,在五棱锥
中,
平面
,
∥
,
∥
,
∥
,
,
,
,
是等腰三角形.
(1)求证:平面
平面
;
(2)求侧棱
上是否存在点
,使得
与平面
所成角大小为
,若存在,求出
点位置,若不存在,说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】(本小题满分12分)已知函数
(
)的最小正周
期为
,
(Ⅰ)求
的值;
(Ⅱ)将函数
的图像上各点的横坐标缩短到原来的
,纵坐标不变,得到函数![]()
的图像,求函数
在区间
上的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】若函数
在区间
上,
,
,
,
,
,
均可为一个三角形的三边长,则称函数
为“三角形函数”.已知函数
在区间
上是“三角形函数”,则实数
的取值范围为( )
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】 在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东
且与点A相距40
海里的位置B,经过40分钟又测得该船已行驶到点A北偏东
+
(其中sin
=
,
)且与点A相距10
海里的位置C.
(I)求该船的行驶速度(单位:海里/小时);
(II)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.
![]()
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,直三棱柱
中,
,
,
是
的中点,
是等腰三角形,
为
的中点,
为
上一点.
![]()
(I)若
平面
,求
;
(II)平面
将三棱柱
分成两个部分,求较小部分与较大部分的体积之比.
查看答案和解析>>
科目: 来源: 题型:
【题目】某企业生产A,B两种产品,生产1吨A种产品需要煤4吨、电18千瓦;生产1吨B种产品需要煤1吨、电15千瓦。现因条件限制,该企业仅有煤10吨,并且供电局只能供电66千瓦,若生产1吨A种产品的利润为10000元;生产1吨B种产品的利润是5000元,试问该企业如何安排生产,才能获得最大利润?
查看答案和解析>>
科目: 来源: 题型:
【题目】关于空间直角坐标系
中的一点
,有下列说法:
①点
到坐标原点的距离为
;
②
的中点坐标为
;
③点
关于
轴对称的点的坐标为
;
④点
关于坐标原点对称的点的坐标为
;
⑤点
关于坐标平面
对称的点的坐标为
.
其中正确的个数是
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的离心率为
,点
在椭圆
上.
(I)求椭圆
的方程;
(II)设动直线
与椭圆
有且仅有一个公共点,判断是否存在以原点
为圆心的圆,满足此圆与
相交于两点
(两点均不在坐标轴上),且使得直线
的斜率之积为定值?若存在,求此圆的方程;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某大学生在开学季准备销售一种文具盒进行试创业,在一个开学季内,每售出1盒该产品获利润50元,未售出的产品,每盒亏损30元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了160盒该产品,以
(单位:盒,
)表示这个开学季内的市场需求量,
(单位:元)表示这个开学季内经销该产品的利润.
![]()
(I)根据直方图估计这个开学季内市场需求量
的众数和中位数;
(II)将
表示为
的函数;
(III)根据直方图估计利润
不少于4800元的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com