科目: 来源: 题型:
【题目】如图“月亮图”是由曲线
与
构成,曲线
是以原点
为中点,
为焦点的椭圆的一部分,曲线
是以
为顶点,
为焦点的抛物线的一部分,
是两条曲线的一个交点.
![]()
(Ⅰ)求曲线
和
的方程;
(Ⅱ)过
作一条与
轴不垂直的直线,分别与曲线
依次交于
四点,若
为
的中点,
为
的中点,问:
是否为定值?若是求出该定值;若不是说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,已知曲线
,以平面直角坐标系
的原点
为极点,
轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线
.
(1)将曲线
上的所有点的横坐标、纵坐标分别伸长为原来的
倍后得到曲线
.试写出直线
的直角坐标方程和曲线
的参数方程:
(2)在曲线
上求一点
,使点
到直线
的距离最大,并求出此最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按
元/次收费, 并注册成为会员, 对会员逐次消费给予相应优惠,标准如下:
消费次第 | 第 | 第 | 第 | 第 |
|
收费比例 |
|
|
|
|
|
该公司从注册的会员中, 随机抽取了
位进行统计, 得到统计数据如下:
消费次第 | 第 | 第 | 第 | 第 | 第 |
频数 |
|
|
|
|
|
假设汽车美容一次, 公司成本为
元, 根据所给数据, 解答下列问题:
(1)估计该公司一位会员至少消费两次的概率;
(2)某会员仅消费两次, 求这两次消费中, 公司获得的平均利润;
(3)设该公司从至少消费两次, 求这的顾客消费次数用分层抽样方法抽出
人, 再从这
人中抽出
人发放纪念品, 求抽出
人中恰有
人消费两次的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数![]()
(Ⅰ)讨论函数
的单调区间与极值;
(Ⅱ)若
且
恒成立,求
的最大值;
(Ⅲ)在(Ⅱ)的条件下,且
取得最大值时,设
,且函数
有两个零点
,求实数
的取值范围,并证明: ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点
,点
在
轴上,点
在
轴的正半轴上,点
在直线
上,且满足![]()
(Ⅰ)当点
在
轴上移动时,求点
的轨迹
的方程;
(Ⅱ)过点
做直线
与轨迹
交于
两点,若在
轴上存在一点
,使得
是以点
为直角顶点的直角三角形,求直线
的斜率
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】班主任为了对本班学生的考试成绩进行分析,决定从全班
名男同学,
名女同学中随机抽取一个容量为
的样本进行分析.
(1)如果按性别比例分层抽样,可以得到多少个不同的样本?(只要求写出计算式即可,不必计算出结果)
(2)随机抽取
位,他们的数学分数从小到大排序是:
,物理分数从小到大排序是:
.
①若规定
分以上(包括
分)为优秀,求这
位同学中恰有
位同学的数学和物理分数均为优秀的概率;
②若这
位同学的数学、物理分数事实上对应如下表:
![]()
根据上表数据,由变量
与
的相关系数可知物理成绩
与数学成绩
之间具有较强的线性相关关系,现求
与
的线性回归方程(系数精确到
).
参考公式:回归直线的方程是:
,其中对应的回归估计值
,
参考数据:
,
,
,,
,.
查看答案和解析>>
科目: 来源: 题型:
【题目】某景区客栈的工作人员为了控制经营成本,减少浪费,合理安排入住游客的用餐,他们通过统计每个月入住的游客人数,发现每年各个月份来客栈入住的游客人数会发生周期性的变化,并且有以下规律:
①每年相同的月份,入住客栈的游客人数基本相同;
②入住客栈的游客人数在2月份最少,在8月份最多,相差约400人;
③2月份入住客栈的游客约为100人,随后逐月递增直到8月份达到最多.
(1)若入住客栈的游客人数
与月份
之间的关系可用函数
(
,
,
)近似描述,求该函数解析式;
(2)请问哪几个月份要准备不少于400人的用餐?
查看答案和解析>>
科目: 来源: 题型:
【题目】2016年巴西奥运会的周边商品有80%左右为“中国制造”,所有的厂家都是经过层层筛选才能获此殊荣.甲、乙两厂生产同一产品,为了解甲、乙两厂的产品质量,以确定这一产品最终的供货商,采用分层抽样的方法从甲、乙两厂生产的产品共98件中分别抽取9件和5件,测量产品中的微量元素的含量(单位:毫克).下表是从乙厂抽取的5件产品的测量数据:
编号 | 1 | 2 | 3 | 4 | 5 |
| 169 | 178 | 166 | 175 | 180 |
| 75 | 80 | 77 | 70 | 81 |
(1)求乙厂生产的产品数量:
(2)当产品中的微量元素
满足:
,且
时,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量:
(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com